In 2023 scientists set a new record for the most papers retracted

According to a report in the science journal Nature published today, in 2023 scientists set a new record for the most papers retracted in a single year and illustrating the steady rise of fake papers in recent years.

The number of retractions issued for research articles in 2023 has passed 10,000 — smashing annual records — as publishers struggle to clean up a slew of sham papers and peer-review fraud. Among large research-producing nations, Saudi Arabia, Pakistan, Russia and China have the highest retraction rates over the past two decades, a Nature analysis has found.

The bulk of 2023’s retractions were from journals owned by Hindawi, a London-based subsidiary of the publisher Wiley. So far this year, Hindawi journals have pulled more than 8,000 articles, citing factors such as “concerns that the peer review process has been compromised” and “systematic manipulation of the publication and peer-review process”, after investigations prompted by internal editors and by research-integrity sleuths who raised questions about incoherent text and irrelevant references in thousands of papers.

Wiley is moving to shut down this Hindawi subsidiary, canceling many of the journals and abandoning the name entirely. Meanwhile, the overall problem continues to grow, and threatens to get worse with the introduction of papers that can be written entirely by the new artificial intelligence software.

Much of this problem is tied to our bankrupt academic system, which judges scientists by the number of papers the publish rather than how they teach in the classroom. Thus, research scientists at universities have no motive to teach well. Instead they focus on getting papers in print, even if they have to fake it.

Stripped screws preventing access to Bennu samples

According to the scientists working to extract the samples from the asteroid Bennu brought back by the OSIRIS-REx sample return capsule, the work has been stymied because of two stripped screws.

Last month, researchers at the Johnson Space Center in Houston, Texas, discovered that two of the 35 screws that fasten the lid of the sample-return canister couldn’t be opened — blocking access to the remainder of the space rock. Curators used tweezers to pull out what they could, but NASA is now making new screwdrivers so it can get into the equipment it flew billions of kilometres across the Solar System to the asteroid Bennu and back.

Because the capsule is kept within a sealed glovebox to prevent the samples from being contaminated by the Earth environment, removing the screws requires NASA to manufacture special screwdrivers that will also not contaminate that environment. This work is what is causing the delay.

Martian crater or mud caldera?

Martian crater or volcano?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists only call this a “feature,” likely because they don’t wish to guess as to its nature without more data. However, the 2.5 mile wide splash apron around the central double crater certainly merits a closer look. That double crater could be from impact, but it also could be a caldera, with the apron the result of material that flowed from the caldera.

That there appear to be fewer craters on the apron than on the surrounding terrain strengthens this last hypothesis. The apron would have erased many earlier impact craters, resulting in this lower count.

The location however suggests that if this feature was volcanic in origin it might not have been spewing out magma.
» Read more

Voyager-1 has computer issues

According to the Voyager-1 science team, the probe has developed a problem with one of its three onboard computers, called the flight data system (FDS), that is preventing it from sending back useable data.

Among other things, the FDS is designed to collect data from the science instruments as well as engineering data about the health and status of the spacecraft. It then combines that information into a single data “package” to be sent back to Earth by the TMU. The data is in the form of ones and zeros, or binary code. Varying combinations of the two numbers are the basis of all computer language.

Recently, the TMU began transmitting a repeating pattern of ones and zeros as if it were “stuck.” After ruling out other possibilities, the Voyager team determined that the source of the issue is the FDS. This past weekend the team tried to restart the FDS and return it to the state it was in before the issue began, but the spacecraft still isn’t returning useable data.

Engineers are trouble-shooting the problem, and expect it will take several weeks at best to identify and then fix the issue. The 22-hour travel time for communications to reach the spacecraft, now beyond the edge of the solar system more than 15 billion miles away, means that it will at minimum take about two days to find out if a transmitted fix works.

As the spacecraft was launched in 1977, most of the engineers now working on it were not even born then, and must deal with a technology that was designed before personal computers, no less smart phones, even existed. Like the entire 1960s space race, the two Voyager craft now beyond the solar system were built by engineers using slide rules.

Voyager-2 also had problems in August that engineers were able to fix, so the prognosis here is not bad.

Craters in a row

Craters in a row
Click for original image.

Cool image time from Mars! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 13, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It highlights a string of craters, all lined up in an almost straight line.

Were these craters caused by the impact of an asteroid that broke up as it burned its way through the thin Martian atmosphere? The lack of any raised rims argues instead that these are sinks produced not from impact but from a collapse into a void below, possibly a fault line.

Yet, almost all of the craters in this image, even those not part of this crater string, show no raised rims. If sinks, the voids below don’t seem to follow any pattern, which once again argues in favor of random impacts, with the string produced by a bolide breaking up just prior to hitting the ground.
» Read more

Galaxies in a row

Galaxies in a row
Click for original image.

Cool image time from Hubble! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a survey of nearby “pecular” galaxies. What makes it unusual is the line of distant galaxies below the largest on the left.

The wonderful quality of this image also reveals several further galaxies, not associated with this system but fortuitously positioned in such a way that they appear to be forming a line that approaches the leftmost (in this image) component of Arp-Madore 2105-332, which is known individually as 2MASX J21080752-3314337. The rightmost galaxy, meanwhile, is known as 2MASX J21080362-3313196. These hefty names do not lend themselves to easy memorisation, but they do actually contain valuable information: they are coordinates in the right ascension and declination system used widely by astronomers to locate astronomical objects.

Both larger galaxies are thought to be about 200 million light years away, with the smaller ones far more distant. If you look at the full resolution image, you will see that there are at least six galaxies in that line, one that appears to be an elliptical galaxy with all the rest a variety of different types of spiral galaxies. The detail provided by Hubble is truly astonishing.

Though they are not linked to the larger galaxies, it is not clear if they are linked to each other.

Webb takes infrared false-color image of supernova remnant Cassiopeia A

Cass A in infrared
Click for original image.

Using the Webb Space Telescope, astronomers have obtained the first wide full infrared view of the supernova remnant Cassiopeia A, the remains of a supernova that occurred about 11,000 years ago. That image is to the right, reduced to post here.

The most noticeable colors in Webb’s newest image are clumps represented in bright orange and light pink that make up the inner shell of the supernova remnant. Webb’s razor-sharp view can detect the tiniest knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself. Embedded in this gas is a mixture of dust and molecules, which will eventually become components of new stars and planetary systems. Some filaments of debris are too tiny to be resolved by even Webb, meaning they are comparable to or less than 10 billion miles across (around 100 astronomical units). In comparison, the entirety of Cas A spans 10 light-years across, or 60 trillion miles.

…When comparing Webb’s new near-infrared view of Cas A with the mid-infrared view, its inner cavity and outermost shell are curiously devoid of color. The outskirts of the main inner shell, which appeared as a deep orange and red in the MIRI image, now look like smoke from a campfire. This marks where the supernova blast wave is ramming into surrounding circumstellar material. The dust in the circumstellar material is too cool to be detected directly at near-infrared wavelengths, but lights up in the mid-infrared.

The four rectangles mark specific features of particular interest, with #4, dubbed by the scientists Baby Cas, the most intriguing.

This is a light echo, where light from the star’s long-ago explosion has reached and is warming distant dust, which is glowing as it cools down. The intricacy of the dust pattern, and Baby Cas A’s apparent proximity to Cas A itself, are particularly intriguing to researchers. In actuality, Baby Cas A is located about 170 light-years behind the supernova remnant.

By comparing this infrared view with Hubble’s optical and Chandra’s X-ray views, astronomers will be able to better decipher Cas A’s make-up and geometry.

The steep mountain slopes inside Valles Marineris

Overview map

The steep mountain slopes inside Valles Marineris
Click for full image.

Time for another cool image showing the dramatically steep terrain of Valles Marineris on Mars, the largest known canyon in the solar system. The picture to the right, cropped, reduced, and enhanced to post here, was taken on October 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists rightly label this picture “Steep Slopes in West Melas Chasma”. The red dot marks the high point on this ridgeline. The green dot at the upper left marks the lowest point in the picture, about 4,800 feet below the peak. The blue dot on the right edge marks the low point on the ridge’s eastern flank, about 4,600 feet below the peak. The cliff to the east of the peak drops quickly about 1,300 feet in less than a mile.

On the overview map above, the white dot marks the location. The inset is an oblique view, created from a global mosaic of MRO’s context camera images, with the white rectangle indicating approximately the area covered by the picture above.

The immense scale of Valles Marineris must once again be noted. The elevations in this picture are comparable to the descent you make hiking down from the South Rim of the Grand Canyon. They pale however when compared to Valles Marineris. In the inset I have indicated the rim and floor of Valles Marineris in this part of the canyon. The elevation distance between the two is 18,000 feet.

In other words, the canyon to the east of this ridge is quite comparable in size to the Earth’s Grand Canyon, and it is hardly noticeable within the larger canyon of Valles Marineris.

Big Martian gullies partly filled with glacial material

Overview map

Big Martian gullies partly filled with glacial material

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists dub as “large gullies with infilled alcoves.”

Gullies on Mars were one of the first discoveries by orbiters of small-scalle potential water-caused features on the Red Planet. The favorite explanation for their formation today involves the seasonal freeze-thaw cycle, combined with the deposition of ice and dry ice frost in the winter. When that ice and dry ice sublimates away in the spring it causes collapse and erosion, widening the gullies.

These gullies also exhibit evidence that underground and glacial ice might contribute as well. The material in the largest gullies looks like a mixture of glacial material and dust and debris. It could also be that there is ice impregnated in the ground, which can cause large collapses when it sublimates away.

The white rectangle on the overview map and inset above marks the location of this picture, on the western rim of a 13-mile-wide unnamed crater inside the western portion of the 2,000-mile-long mid-latitude strip on Mars I dub glacier country, since every image from orbit shows evidence of glaciers.

This picture is no different, as the horizontal cracks at the base of the crater rim suggests the glacier that fills the crater floor is being pulled apart by gravity at its edges. The elevation drop from the top of the rim to the floor is about 3,200 feet, so any ice on that slope will definitely be stressed by gravity. Such cracks are therefore not surprising.

Psyche takes its first pictures

The spacecraft Psyche — going to the metal asteroid Psyche — has successfully taken its first pictures, proving its camera and pointing system work as planned.

The pictures, taken on December 4, 2023 from about 16 million miles from Earth, are actually quite boring, merely showing a field of stars. However,

The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images. …The imager takes pictures through multiple color filters, all of which were tested in these initial observations.

At this moment all looks good for Psyche’s eventual arrival at Psyche in 2029.

Mars Reconnaissance Orbiter takes another look at the non-face on Mars

The non-face on Mars
Click for original image

In 2007, shortly after it began science operations in Mars orbit, the science team for Mars Reconnaissance Orbiter (MRO) pointed its high resolution camera at the so-called “Face on Mars”, taking a picture that confirmed (as had Mars Global Surveyor several years earlier) that this “face” was a non-face, simply a mesa whose features made it appear roughly facelike in low resolution imagery.

Now, more than sixteen years later, scientists have used MRO to take a new picture of the non-face mesa. That picture is to the right, cropped, reduced, and sharpened to post here. Compared to the 2007 photo the new photo has far better lighting conditions, revealing many details on the mesa’s eastern half that were mostly obscured by shadows previously.

In fact, these new details strongly suggest that the depression on the mesa’s eastern slopes harbors a decaying glacier. At least, that is what the features there resemble.
» Read more

China launches Egyptian Earth observation satellite

China successfully launched an Egyptian Earth observation satellite on December 4, 2023, its Long March 2C rocket lifting off from its Jiquan spaceport in northwestern China.

The satellite was built in Egypt with Chinese assistence, and is designed to study water and land resources for Egypt.

No word on where the rocket’s lower stages, which use toxic hypergolic fuels, crashed within China.

The leaders in the 2023 launch race:

89 SpaceX
54 China
16 Russia
7 Rocket Lab
7 India

American private enterprise still leads China in successful launches, 101 to 54, and the entire world combined 101 to 86. SpaceX by itself now leads the entire world (excluding other American companies) 89 to 86.

Sunspot update: The Sun continues to prove that solar scientists understand nothing

With today’s monthly update from NOAA of its graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, we find that the Sun continues to confound the experts. As I do every month, I have posted this graph below, with additional details to provide the larger context.

In November the sunspot count rose slightly, but remained well below the highs that had occurred through most of the first half of 2023. Yet, despite that continuing reduction in the number of sunspots, the overall amount of activity remains above the prediction of some scientists, and below the prediction of other scientists.
» Read more

Lava-filled Martian crater

Lava-filled Martian crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the northeast corner of an unnamed 7-mile-wide crater, located near the equator in the dry Martian tropics.

The MRO science team labels this “crater and lava fill”, suggesting that the crater interior is filled with lava material. The nature of that crater floor reinforces this conclusion, as it is relatively smooth and does not have rough aspects of glacial material found in craters in the mid-latitudes. Instead, it looks like a frozen lake of lava that has the peaks of mostly buried features poking up at various spots.

What makes this crater interesting however are the gullies on the northern interior rim. Gullies on Mars are normally thought to be associated with some water-frost-ice process, probably seasonal, where the thaw-freeze cycle causes small collapses and avalanches. Yet, this crater is almost at the equator, in a very dry region where no evidence of near-surface ice is found. Gullies here suggest the hypothesis for explaining the gullies on Mars have not quite solved the mystery.
» Read more

Astronomers: A solar system with six Earth-sized planets orbiting in perfect resonance

The resonances of this exo-solar system
Click for original image.

Astronomers today announced the discovery of a solar system with six Earth-sized exoplanets that orbit their Sun-like star in a synchronized manner, their orbits in a gravitational lock-step called resonance.

The graphic to the right illustrates that pattern. From the press release:

While multi-planet systems are common in our galaxy, those in a tight gravitational formation known as “resonance” are observed by astronomers far less often. In this case, the planet closest to the star makes three orbits for every two of the next planet out – called a 3/2 resonance – a pattern that is repeated among the four closest planets.

Among the outermost planets, a pattern of four orbits for every three of the next planet out (a 4/3 resonance) is repeated twice. And these resonant orbits are rock-solid: The planets likely have been performing this same rhythmic dance since the system formed billions of years ago. Such reliable stability means this system has not suffered the shocks and shakeups scientists might typically expect in the early days of planet formation – smash-ups and collisions, mergers and breakups as planets jockey for position. And that, in turn, could say something important about how this system formed. Its rigid stability was locked in early; the planets’ 3/2 and 4/3 resonances are almost exactly as they were at the time of formation. More precise measurements of these planets’ masses and orbits will be needed to further sharpen the picture of how the system formed.

All the planets have orbits less than 55 days long, and though all have masses less than six Earth-masses, data suggests they more resemble Neptune because of their expanded gaseous make-up caused by the close orbits to the star.

Future observations are planned, most especially with Webb because its infrared capability will detect much of the chemistry of this system.

Communications resume with Mars orbiters and rovers

It now appears that communications have resumed between Mars and the Earth, the planets having moved do that the Sun is no longer in between. From an update by the Curiosity science team today:

Mars has just emerged from its solar conjunction period, when sending commands to all Mars spacecraft was not safe for three weeks since the Red Planet was behind the Sun as seen from Earth. During that time, Curiosity followed a long plan of instructions covering Sols 4004-4022 which were uploaded to the rover during the week of October 30. The early word on is that the rover weathered the long blackout period just fine.

During the black-out the rovers had continued to upload data to the orbiters above, and some of that data was relayed back to Earth this past weekend, though the relay was “spotty” with some data packages lost.

Communications have now cleared up, and so we should expect both Curiosity and Perseverance to resume full operations again.

Hubble in safe mode due to gyroscope problem

One of the three working gyroscopes (three have already failed0 on the Hubble Space Telescope experienced repeated problems in mid-November, and has now put the telescope in safe mode while engineers trouble-shoot the problem.

Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23.

The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.

The long term plan when the telescope only has two working gyros, assuming no improvised maintenance mission is flown to Hubble to give it new gyroscopes, is to work with only one (treating the second as a back-up) in order to extend the telescope’s life as long as possible.

And though it is true that Hubble could continue to do science with only one gyro, images from that point will likely not be as sharp, and thus will end more than three decades of imagery that changed our perception of the universe.

The Chinese 2-meter Xuntian optical space telescope, now scheduled for launch in 2025, will likely then replace Hubble as the world’s top optical telescope. American astronomers better start learning Chinese, assuming China even allows them access. They will not have a right to complain, however, as it was their decision to not build a Hubble replacement, in their 2000, 2010, and 2020 decadal reports.

Thick windblown ash in Mars’ largest mountain region

Thick windblown ash near Mars' largest volcano
Click for original picture.

The cool image to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the scientists label as “Erosional Features on Olympus Mons.”

What is eroding? Based on the picture itself the first guess is volcanic ash, as these features strongly resemble the many features seen in the Medusae Fossae Formation, the largest volcanic ash field on Mars — about the size of the subcontinent of India.

Medusae however is many thousand miles away, and is not apparently related to any specific volcano. These features are instead directly linked to Olympus Mons, the largest known volcano in the solar system. However, much of the terrain for many hundreds of miles around Olympus is covered with flood lava, which was deposited and hardened quickly to form smooth featureless plains that have resisted much erosion over the eons. Here the terrain is clearly eroded, which suggests that if the material here is volcanic, it was laid down not by flood lava but by falling ash that got compressed but was easily friable and could be blown away by the winds of Mars’ thin atmosphere.
» Read more

Close-up of Helene, one of Saturn’s many many moons

Helene, as seen by Cassini in 2011
Helene, as seen by Cassini in 2011

Cool image time! Though the Saturn orbiter Cassini is long gone, having been sent into Saturn’s atmosphere to burn up in 2017, its image archive of magnificent pictures is still available to peruse. To encourage others to do so, NASA today issued a series of press releases, listing the spacecraft’s top ten pictures from 2011, 2012, 2013, 2014, and 2015.

The picture to the right, cropped, reduced, and sharpened to post here, comes from the 2011 collection and was taken on June 18, 2011. It shows a close-up of 21-mile-wide Helene, one of Saturn’s many many moons and only discovered in 1980. Back in 2010 I featured another Cassini image of Helene, but that picture did not reveal the small surface features seen in the photo to the right.

The light and dark streaks probably indicate dust flowing downhill on the surface. Though the gravity of this object is tiny, it will be enough for dust to act like almost like a liquid, flowing down grade and then pooling in the central pond at the lowest point near the center of the picture. That process is so much like liquid flowing that it appears to have even eroded gullies on slopes near the top and bottom of the picture.

Side note: NASA’s “Science Editorial Team” also issued a press release today that falsely and ignorantly claimed these releases were “to celebrate 10 years since arriving at Saurn,” implying that Cassini arrived in 2013 and is still functioning.

The problem is that Cassini arrived in orbit around Saturn in 2004 and as I noted above ended its mission in 2017. It thus appears that the NASA Science Editorial Team is unable to do even one five-second web search to find out what really happened.

Just another data point indicating the dark age we now live in.

British scientists get their own Bennu sample to study

The British History Museum has now received a small sample of material from the asteroid Bennu, brought back to Earth by the planetary probe OSIRIS-REx.

The first two years of research at the Natural History Museum will focus on non-destructive tests, such as X-ray diffraction and electron microscopy to learn about Bennu’s mineral composition and structure. The largest grains in the sample are on the order of millimetres wide, while the smallest are mere dust particles. “It doesn’t sound like a lot of material, but it’s plenty to work with,” King said.

The museum is home to one of the world’s leading meteorite collections, and the staff are well-used to handling small amounts of extremely precious materials from outer space. Unlike meteorites that have been baked and battered on their fiery passage through Earth’s atmosphere, the dust and rocky fragments from Bennu were brought to Earth in pristine condition, allowing scientists a rare glimpse of the unaltered asteroid.

The last sentence says it all. Up until recently, researchers have had a distorted view of the overall make-up of asteroids because the oldest kinds, carbonaceous chondrite, are the most delicate and get significantly changed by their passage through the Earth’s atmosphere. The samples from Bennu and Ryugu are changing this, and will eventually revolutionize the understanding scientists have of our present solar system.

Mars’ giant sinkholes

The floor of one of Mars' giant sinkholes

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the floor and northern slope of Hebes Chasma, one of the many very large enclosed pits that can be found to the north of Valles Marineris, the largest canyon in the solar system. Though Hebes seems small next to the 1,500 mile long Valles Marineris, it still is 200 miles long by 80 miles wide, and could easily fit a half dozen Grand Canyons within it.

For example, the Grand Canyon is from 4,420 to 5,400 feet deep, hiking down from the south and north rim lodges respectively, which sit about ten miles apart. On this picture, the peak on the right sits about 5,300 feet above and only about 3.8 miles from the low spot on the bottom left, which means this one small picture encapsulates the Grand Canyon. And yet, the northern rim of Hebes sits another 21,000 feet higher and twelve miles away. And the entire chasma itself extends 50 miles to the west, 150 miles to the east, and 50 miles to the south.
» Read more

Striped terrain on Mars

Overview map

Striped terrain on Mars
Click for original image.

Today’s cool image will be a mystery with the answer below the fold. Before you look at the answer, however, you must try to come up with your own explanation for the picture to the right, cropped to post here, that was taken on September 25, 2018 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

What we see in this picture is what looks like a striped terrain, alternating bands of light and dark. What caused the bands? Why the different colors?

The overview map above provides some clues. The white rectangle inside Juventae Chasma near the map’s center marks the area within which this picture was taken, though the picture to the right covers only about a pixel inside that rectangle.

Can you guess what these stripes reveal, from this little information? For this quiz to work you must make a guess, but be prepared to be wrong and quickly reassess your conclusions. Such is the real scientific method, so rarely taught now in schools.
» Read more

China delays till ’25 the launch of its Hubble-class optical space telescope

China today revealed that it is delaying the the launch of its Xuntian space telescope from early next year to 2025.

Zhan Hu, project scientist of Xuntian space telescope system, revealed that the delay was necessary for the team to finalize a preflight “engineering qualification model.” This model will undergo rigorous performance tests early next year. Despite the setback, China is making significant strides by domestically developing all five instruments for Xuntian, a first for the country, Scientific American reported.

The optical telescope, designed to somewhat comparable to Hubble, is intended to fly close to China’s Tiangong-3 space station where astronauts will periodically fly over to do maintenance and repair. Its primary mirror, two meters in diameter, is only slightly smaller than Hubble’s 2.4 meter mirror.

The article says the launch was supposed to happen before the end of this year, but that is incorrect. The launch has been targeting the spring of 2024 since February.

Martian ice sheets sublimating like peeling paint?

Overview map

Martian ice sheets resembling paint peeling
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 19, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The features are described as “ribbed terrain” in the label. To my eye they more resemble flakes of peeling paint, most especially the mesas in the lower left. On the full image there are many more examples that resemble old paint peels, barely attached to the wall.

The white dot on the overview map above marks the location, deep inside the 2,000-mile-long strip in the northern mid-latitudes I dub glacier country, because everything seems covered by glacial features. This location is at 42 degrees north latitude, where plenty of near-surface ice features are found on Mars.

At first glance it looks like the top “paint-peel” layers to the south have been slowly sublimating away, leaving behind the smooth plain to the north. The problem is that this smooth area in the full image actually appears to be a glacial ice sheet of its own, filling all the low areas between mesas.

In other words, we are probably looking at layers and layers of ice sheets, each created during a different Martian climate cycle, caused by the wide swings of the planet’s rotational tilt, or obliquity.

The location is within Arabia Terra, the largest transitional zone on Mars between the northern lowland plains and the southern cratered highlands. Thus it sits above the glaciers that fill the lower regions of chaos to the north. What we have here is terrain that will eventually become chaos terrain, as the narrow faults and cracks are slowly widened into canyons by the cycles of glacial activity.

NASA laser communication experiment succeeds in sending data from beyond Moon

A NASA laser communication experiment on the asteroid probe Psyche succeeded on November 14, 2023 in sending data to and from the spacecraft as it traveled away from Earth.

NASA’s Deep Space Optical Communications (DSOC) experiment has beamed a near-infrared laser encoded with test data fromnearly 10 million miles (16 million kilometers) away – about 40 times farther than the Moon is from Earth – to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California. This is the farthest-ever demonstration of optical communications.

Riding aboard the recently launched Psyche spacecraft, DSOC is configured to send high-bandwidth test data to Earth during its two-year technology demonstration as Psyche travels to the main asteroid belt between Mars and Jupiter. NASA’s Jet Propulsion Laboratory in Southern California manages both DSOC and Psyche.

The experiment seeks to demonstrate the advantages of optical communications, which if successful could have data speeds ten to a hundred times faster than standard high band radio communications. While the technology has been demonstrated as far away as the Moon, this is the first successful test from deep space, a key advance that suggests the technology is becoming mature enough to use on planetary missions.

If so, it could largely replace or at least supplement the various radio-antenna networks on Earth, such as NASA’s Deep Space Network, with smaller and more efficient communication links.

Ancient volcanic vent on Mars

Volcanic vent on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The picture label describes it as a “Low Shield Vent and Pit Northeast of Arsia Mons,” suggesting these depressions are volcanic in nature. We know the pit in the lower left is not an impact crater because it has no raised rim of ejecta. Instead, it looks like a collapsed sinkhole, formed when the ceiling above a void could no longer support its weight. Similar, the trench to the northeast is aligned with the downhill grade to the northeast, with its features suggesting a vent draining in that direction.

The ample dust inside the trench and pit suggest that it has been a very long time since this vent was active. Research suggests volcanic activity last occurred in this region from 10 to 300 million years ago, so that gives us a rough estimate of this vent’s age. Since then any dust that is blown into it will tend to become trapped there.
» Read more

India now plans robotic lunar sample return mission

Following the successful landing of Vikram on the Moon, officials of India’s space agency ISRO have announced it is considering a much more ambitious follow-up, Chandrayaan-4, that will not only land on the lunar surface with a much larger rover, it will also dig up some samples and return them to Earth.

The spacecraft will travel to the moon, land, collect samples, and then connect to another module in space. The module will then return to Earth orbit. As the two modules approach Earth, they will separate, with one part returning to Earth and the other will keep orbiting the planet. Desai described the mission as ambitious, stating, “Hopefully, in the next five to seven years, we will meet the challenge of bringing samples from the moon.”

For return to Earth, Desai said that the mission would need two launch vehicles containing four modules (Transfer module, Lander Module, Ascender Module and Re-entry module). RM and TM would be Parked in the lunar orbit and two will go down from which Ascender Module will get separated from lander module and would collect the sample.

If India does this mission, while also completing its first manned mission during that time frame, it will place itself in direct competition with China and the U.S., and in fact will be getting close to matching both in capabilities.

Webb: Needles scattered near the center of the Milky Way

Needles in space
Click for original image.

Scientists today released a new false-color infrared image taken by the Webb Space Telescope of a region about 300 light years from the center of the Milky Way, dubbed Sagittarius-C. That picture is to the right, cropped, reduced and sharpened to post here. The blue or cyan regions are ionized hydrogen clouds, and with this image were revealed to be much more extensive than expected. The orange blob near the center is a densely packed cluster of protostars, the starlight blocked by the cloud of material.

The most interesting feature however are the needle-like structures within that ionized hydrogen, oriented in all directions in a manner that looks completely random. Though such needles have been seen previously, the data here is far more detailed, and might eventually help astronomers figure out what the heck these features are and what caused them.

Salt glaciers on Mercury?

From Figure A1 of paper
From Figure A1 of paper.

Based on a new analysis of data from the Messenger spacecrat that orbited Mercury from 2011 to 2015, scientists today posited the possibility that salt glaciers exist on Mercury and have reshaped its terrain in manner vaguely comparable to what Mars Reconnaissance Orbiter (MRO) has found on Mars.

You can read the paper here [pdf]. The image to the right, enhanced by the scientists to bring out the faint blue in the hollows, is remarkably reminiscent of the hollows and scallop terrain found in many places in the high Martian latitudes. From its conclusion:

Detecting widespread elemental volatile surface compositions, ubiquitous sublimation hollows, and extensive chaotic terrains has significantly reshaped our perception of Mercury’s geological past. These observations collectively point to the presence of volatile-rich strata spanning several kilometers in depth and likely formed before the [Late Heavy Bombardment] (∼3.8 billion years ago). This notion challenges the conventional view of a volatile-depleted Mercurian crust.

The morphologies within Mercury’s Raditladi basin bear a striking morphologic resemblance to glaciers on Earth and Mars, suggesting their origin from an impact-exposed [volatile-rich layer], likely containing halite. Our numerical simulations show that the unique rheological properties of halite, including the high thermal sensitivity of its viscosity, reinforce this hypothesis. These glacier-like features occur beyond the chaotic terrain boundaries, indicating a potentially global yet concealed, volatile-rich upper stratigraphy. We posit that the exposure of these volatile-rich materials, instigated by impact events, could have been instrumental in the formation and evolution of hollow features, signifying a complex geodynamic history of volatile migration and redistribution, essentially interconnecting some of the oldest and youngest stratigraphic materials on the planet.

The scientists do not have enough information as yet to determine if these glaciers are still active or not. Moreover, the theorized layer of volatile material near the surface remains unconfirmed, requiring in situ investigation to determine its existence with certainty. Like Mars, if it exists it likely only does so in the high latitudes.

Researchers confirm it was a Chinese rocket stage that impacted Moon in 2022

Impact, before and after
The crash site is the double crater in the
lower image.

Researchers have now confirmed that the unknown rocket stage that impacted the Moon in 2022 was from a Chinese rocket, a Long March 3B that launched China’s Chang’e-5 lunar sample return mission in November 2020.

“In this paper, we present a trajectory and spectroscopic analysis using ground-based telescope observations to show conclusively that WE0913A is the Long March 3C rocket body (R/B) from the Chang’e 5-T1 mission,” the researchers, led by Tanner Campbell, a doctoral student in the UA’s Department of Aerospace and Mechanical Engineering, wrote in a study that came out Thursday (Nov. 16) in the Planetary Science Journal. These two lines of evidence — how the object was moving and what it was made of — leave little doubt about WE0913A’s provenance, Campbell and his colleagues report.

The data, combined with the unusual double crater caused by the impact, also suggests that this stage had additional unknown equipment at its top, matching the mass of its engines at the bottom. Since the Chinese continue to deny it was their stage and have said nothing about it, we have no idea what that extra equipment might have been.

1 7 8 9 10 11 260