Curiosity finds evidence of complex carbon molecules

In a study released today, the Curiosity science team announced that earlier drill samples revealed evidence of complex organic carbon molecules, the possible remains of past life.

To unlock organic molecules from the samples, the oven baked them to temperatures of between 600°C and 860°C—the range where a known contaminant disappeared—and fed the resulting fumes to a mass spectrometer, which can identify molecules by weight. The team picked up a welter of closely related organic signals reflecting dozens or hundreds of types of small carbon molecules, probably short rings and strands called aromatics and aliphatics, respectively. Only a few of the organic molecules, sulfur-bearing carbon rings called thiophenes, were abundant enough to be detected directly, Eigenbrode says.

The mass patterns looked like those generated on Earth by kerogen, a goopy fossil fuel building block that is found in rocks such as oil shale—a result the team tested by baking and breaking organic molecules in identical instruments on Earth, at Goddard. Kerogen is sometimes found with sulfur, which helps preserve it across billions of years; the Curiosity scientists think the sulfur compounds in their samples also explain the longevity of the Mars compounds.

Earth’s kerogen was formed when geologic forces compressed the ancient remains of algae and similar critters. It’s impossible to say whether ancient life explains the martian organics, however. Carbon-rich meteorites contain kerogenlike compounds, and constantly rain down on Mars. Or reactions driven by Mars’s ancient volcanoes could have formed the compounds from primordial carbon dioxide. Monica Grady, a planetary scientist at The Open University in Milton Keynes, U.K., believes the compounds somehow formed on Mars because she thinks it’s highly unlikely that the rover dug into a site where an ancient meteorite fell. She also notes that the signal was found at the base of an ancient lake, a potential catchment for life’s remains. “I suspect it’s geological. I hope it’s biological,” she says.

It must be emphasized once again that they have not found evidence of past life. What they have found are the types of molecules that are often left behind by life, but can also form without the presence of life.

This result, from past drillholes in the Murray Formation, explains however why Curiosity headed back downhill to do its most recent drill test.

Curiosity has one last tool to help the team find out: nine small cups containing a solvent that frees organic compounds bonded in rock, eliminating the need to break them apart—and potentially destroy them—at high temperatures. In December 2016, rover scientists were finally prepared to use one of the cups, but just then the mechanism to extend the rover’s drill stopped working reliably. The rover began exploring an iron-rich ridge, leaving the mudstone behind. In April, after engineers found a way to fix the drill problem, the team made the rare call to go backward, driving back down the ridge to the mudstone to drill its first sample in a year and half. If the oven and mass spectrometer reveal signs of organics in the sample, the team is likely to use a cup. “It’s getting so close I can taste it,” says Ashwin Vasavada, Curiosity’s project scientist at the Jet Propulsion Laboratory in Pasadena, California.

The newest drillhole sample has now entered the mass spectrometer. Stay tuned!

Movie of Juno’s thirteenth fly-by of Jupiter

Cool image time. Mathematician and software programmer Gerald Eichstädt has released another movie using images from Juno’s thirteenth close fly-by of Jupiter.

I have embedded the movie below the fold. As he notes,

The movie covers two hours of this flyby in 125-fold time lapse, the time from 2018-05-24T04:41:00.000 to 2018-05-24T06:41:00.000. It is based on 27 of the JunoCam images taken during the flyby, and on spacecraft trajectory data provided via SPICE kernel files.

The view begins by looking down at the northern hemisphere, and gets to within 2,200 miles of the giant planet’s cloud tops.

» Read more

New data widens the margin of error in carbon dating

The uncertainty of science: New data suggests that the accuracy of carbon-14 dating, used mostly in archaeology and research covering the last few thousand years, has a wider margin of error than previously thought.

By measuring the amount of carbon-14 in the annual growth rings of trees grown in southern Jordan, researchers have found some dating calculations on events in the Middle East – or, more accurately, the Levant – could be out by nearly 20 years.

That may not seem like a huge deal, but in situations where a decade or two of discrepancy counts, radiocarbon dating could be misrepresenting important details.

To me, it seems somewhat arrogant for any scientist to assume this dating could be more accurate than this, especially going back several thousand years and especially considering the number of factors described in the article that they have account for and make assumptions about.

Nonetheless, documenting this margin of error means that the arrogant scientists of the future will have to include it in their research, rather than making believe it doesn’t exist.

Juno mission extended

NASA has extended the Juno mission through 2022 in order to complete its planned science.

NASA has approved an update to Juno’s science operations until July 2021. This provides for an additional 41 months in orbit around Jupiter and will enable Juno to achieve its primary science objectives.Juno is in 53-day orbits rather than 14-day orbits as initially planned because of a concern about valves on the spacecraft’s fuel system. This longer orbit means that it will take more time to collect the needed science data.

An independent panel of experts confirmed in April that Juno is on track to achieve its science objectives and is already returning spectacular results.The Juno spacecraft and all instruments are healthy and operating nominally.

NASA has now funded Juno through FY 2022. The end of prime operations is now expected in July 2021, with data analysis and mission close-out activities continuing into 2022.

I will admit that though Juno is clearly learning a great deal about Jupiter, such as this story about lightning there, its larger orbit makes it difficult to track the gas giant cloud structures as they evolve. This is unfortunate.

More problems for James Webb Space Telescope?

The impending release of an independent NASA review of the state of the James Webb Space Telescope project suggests that the project is faced with additional issues.

NASA is in the process of evaluating the report from the Independent Review Board chaired by Tom Young to assess the status of the James Webb Space Telescope (JWST). Established in March, the Board was due to submit its report on May 31. NASA said today that the Board has completed its work and briefed NASA. The report will be released later this month after NASA determines the impact on cost and schedule.

Thomas Zurbuchen, NASA Associate Administrator for the Science Mission Directorate, created the Webb Independent Review Board (WIRB) on March 27, the same day he announced another delay in the telescope’s launch. WIRB held its first meeting the next week.

For many years, JWST appeared to be on track for launch in October 2018 after a 2011 restructuring that followed a series of earlier cost overruns and schedule delays. Congress capped the development cost (not operations) at $8 billion in law. Pursuant to the 2005 NASA Authorization Act, if a program exceeds 30 percent of its baseline estimated cost, NASA must notify Congress and no money may be spent on it after 18 months from the time of that notification unless Congress reauthorizes it.

The project will not die, Congress will simply extend it with lots more money. That is how big NASA projects really function, to take as long as possible so that they can continue their real goal of providing pork barrel jobs in congressional districts.

Democrats generally reject scientist candidates

In yesterday’s primary elections, scientists running as Democrats generally did poorly.

Science-minded candidates seeking seats in the next U.S. Congress took a drubbing from their Democratic opponents in yesterday’s raft of primary elections across the country.

Voters went to the polls Tuesday in eight states to choose nominees for the November elections. And none of the candidates who touted their scientific credentials—a list that includes volcanologist Jess Phoenix, technologist Brian Forde, pediatrician Mai Khanh Tran, and geophysicist Grant Kier—won their contested contests. In one California district, neuroscientist Hans Keirstead is trailing in a race that is still too close to call.

This article in the journal Science is fun to read in that it blatantly reveals that journal’s partisan Democratic Party leanings: the goal is to beat Republicans, and the hope was that scientists would do it. For the scientists however, it turns out that Democratic Party voters really don’t like science and the skeptical demands it requires.

Kind of reminds me of the secular liberal Jews who blindly vote Democratic, even as that party works to betray them.

China offers big bucks to attract foreign science talent

Link here. In China’s recent push to build big science facilities, such as the giant radio telescope FAST, it has faced a shortage of qualified homegrown Chinese scientists to run those new facilities.

To solve this problem, China is now offering big bucks to any scientist, even foreigners, willing to move to China.

On 22 May, the Ministry of Science and Technology issued guidelines that encourage science ministries and commissions to consult foreign experts and attract non-Chinese to full-time positions within China. In a striking change, foreign scientists are now allowed to lead public research projects.

In the past decade, China has aimed to build up its scientific capacity by luring back some of the tens of thousands of Chinese scientists working abroad. The latest measures emphasize that non-Chinese talent is also welcome. Drafted in December 2017 but not previously made public, they are “a confirmation of things that have been going on for a while,” says Denis Simon, an expert on China’s science policy at Duke Kunshan University in China, a branch campus of the Durham, North Carolina–based Duke University.

Simon says foreign scientists are drawn by China’s increased spending on R&D, which is rising twice as fast as its economic growth. Increasingly ambitious big science projects, such as a massive particle accelerator now under study, are a lure as well, says Cao Cong, a science policy specialist at the University of Nottingham Ningbo in China, an affiliate of the U.K. university. The opportunity for foreign scientists to serve as principal investigators for publicly funded programs is a significant new incentive, says Liang Zheng, who studies science and technology policy at Tsinghua University in Beijing.

Of course, moving to a nation ruled under totalitarian communist rule has its drawbacks:

Relocating to China comes with challenges. Gibson teaches in English but needs Chinese language help handling administrative matters and grant applications. Restricted access to internet sites such as Google is also a hurdle. “My research and my teaching regularly rely on access to online resources and search platforms [that are] blocked in China, so this is an impediment to my work,” Gibson says. But he has found workarounds. China shut down many virtual private networks, which provide access to blocked overseas sites, but a few remain. “There’s a saying: ‘Everything in China is difficult, but nothing is impossible,’ which I think reflects the situation very accurately,” Gibson says.

I would also expect that any American who makes this move will face significant security problems with the U.S. government upon their return.

Another intriguing pit on Mars

pit on Mars

Cool image time! In the June release of images from the high resolution camera on Mars Reconnaissance Orbiter, I came across the image on the right, cropped slightly to post here, of a pit in a region dubbed Hephaestus Fossae that is located just at the margin of Mars’s vast northern plains.

Below and to the right is an annotated second image showing the area around this pit. If you click on it you can see the full resolution image, uncropped, and unannotated.

wider view of pit

The scale bar is based on the 25 centimeter per pixel scale provided at the image link. Based on this, this pit is only about ten to fifteen meters across, or 30 to 50 feet wide. The image webpage says the sun was 39 degrees above the horizon, with what they call a sun angle of 51 degrees. Based on these angles, the shadow on the floor of the pit suggests it is about the same depth, 30 to 50 feet.

The shadows suggest overhung walls. This, plus the presence of nearby aligned sinks, strongly suggests that there are extensive underground passages leading away from this pit.

For a caver on Earth to drop into a pit 30 to 50 feet deep is nowadays a trivial thing. You rig a rope (properly), put on your vertical system, and rappel in. When you want to leave you use that same vertical system to climb the rope, using mechanical cams that slide up the rope but will not slide down.

On Mars such a climb would be both easier and harder. The gravity is only one third that of Earth, but the lack of atmosphere means you must wear some form of spacesuit. Moreover, this system is not great for getting large amounts of gear up and down. Usually, people only bring what they can carry in a pack. To use this Martian pit as a habitat will require easier access, preferable by a wheeled vehicle that can drive in.

The pit’s location however is intriguing. The map below shows its location on a global map of Mars. This region is part of the Utopia Basin, the place with the second lowest elevation on Mars.
» Read more

No giant planet needed in Kuiper Belt to shape orbits of outer known planets

Using computer models astronomers have found that the tiny objects in the Kuiper Belt could be sufficient, instead of one giant undiscovered planet, to provide the gravity necessary to explain the orbits of the solar system’s outer planets.

They call theorized giant planet “Planet Nine,” which seems silly since Pluto really still fills that role. Nonetheless, this work also might explain the process that flung some surprisingly large objects so far out into the Kuiper Belt.

They ran supercomputer simulations of how bodies might interact in the outer Solar System far beyond Pluto, in the icy region known as the Kuiper belt. They found that a flock of Moon-sized worlds could do many of the same things as Planet Nine.

Over millions of years, the collective gravity of these smaller worlds would nudge the orbits of distant objects. The worlds would jostle one another like bumper cars and, occasionally, cause an object to move into a very distant orbit. Their simulations suggest that more-massive objects would be flung into the most distant orbits — as some observations have suggested.

We must also remind ourselves that this conclusion is based on a computer model, and is filled with uncertainty. We also do not yet have a full census of objects in the Kuiper Belt, which means this model required many assumptions.

New Horizons awakened to begin preparations for January 1 2019 flyby

The New Horizons engineering team has brought the spacecraft out of hibernation to begin preparations for its January 1 2019 flyby of Kuiper Belt object 2014 MU69, which they have dubbed Ultima Thule.

New Horizons will begin its approach phase of the MU69 flyby on August 16, 2018, when it will begin imaging MU69 and the area around it to begin acquiring data about the KBO and its surroundings. Also, New Horizons will look for potential debris that could pose a hazard to itself, such as moons or rings.

Should any potential dangers be found, New Horizons has four planned opportunities to make trajectory changes from early October to early December 2018. The backup trajectory has a distance from MU69 of 10,000 kilometers (around 6,200 miles). Using the backup trajectory would lead to less and/or lower-quality science data gathered due to the probe flying by MU69 further away than planned.

The approach phase will last from August 16 to December 24, 2018, after which the core phase will begin.

The core phase begins just one week before the flyby and continues until two days afterward. It contains the flyby and the majority of the data gathering.

Based on this schedule, we should begin to get some interesting pictures of Ultima Thule by the fall.

Curiosity’s new drilling technique declared a success

In order to bypass a failed feed mechanism in the rover’s drill, Curiosity’s engineering team has declared successful the new techniques they have developed for drilling and getting samples.

They had successfully completed a new drill hole two weeks ago, but are only now are satisfied that the new method for depositing samples in the laboratories will work.

This delivery method had already been successfully tested at JPL. But that’s here on Earth; on Mars, the thin, dry atmosphere provides very different conditions for powder falling out of the drill. “On Mars we have to try and estimate visually whether this is working, just by looking at images of how much powder falls out,” said John Michael Moorokian of JPL, the engineer who led development of the new sample delivery method. “We’re talking about as little as half a baby aspirin worth of sample.”

Too little powder, and the laboratories can’t provide accurate analyses. Too much, and it could overfill the instruments, clogging parts or contaminating future measurements. A successful test of the delivery method on May 22 led to even further improvements in the delivery technique.

Part of the challenge is that Curiosity’s drill is now permanently extended. That new configuration no longer gives it access to a special device that sieves and portions drilled samples in precise amounts. That device, called the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA), played an important role in delivering measured portions of sample to the laboratories inside the rover.

I suspect that they still need to do more tests, and that the new method of shaking off material from the drill itself will not always work. At the same time, it reopens the option of using the drill and getting samples from it, which is a very good thing.

Globular clusters not as old as universe?

The uncertainty of science: A new computer model, based on binary star systems found in globular clusters, now estimates that those clusters are far younger than previously believed.

Comprised of hundreds of thousands of stars densely packed into a tight ball, globular clusters had been thought to be almost as old as the Universe itself – but thanks to newly developed research models it has been shown that they could be as young as 9 billion years old rather than 13 billion. The discovery brings into question current theories on how galaxies, including the Milky Way, were formed – with between 150-180 clusters thought to exist in the Milky Way alone – as globular clusters had previously been thought to be almost as old as the Universe itself.

Designed to reconsider the evolution of stars, the new Binary Population and Spectral Synthesis (BPASS) models take the details of binary star evolution within the globular cluster into account and are used to explore the colours of light from old binary star populations – as well as the traces of chemical elements seen in their spectra. The evolutionary process sees two stars interacting in a binary system, where one star expands into a giant whilst the gravitational force of the smaller star strips away the atmosphere, comprising hydrogen and helium amongst other elements, of the giant. These stars are thought to be formed as the same time as the globular cluster itself.

Through using the BPASS models and calculating the age of the binary star systems the researchers were able to demonstrate that the globular cluster of which they are part was not as ancient as other models had suggested.

All this study really does is demonstrate again that we really don’t know enough to make a very accurate estimate of the ages of globular clusters. They are very old, but determining precisely how old will require a lot more knowledge.

Boulder-sized asteroid discovered just before it hit Earth

The Catalina Sky Survey, designed to find asteroid with the potential of hitting the Earth, discovered a boulder-sized such asteroid this past weekend just hours before it burned up in the atmosphere.

Although there was not enough tracking data to make precise predictions ahead of time, a swath of possible locations was calculated stretching from Southern Africa, across the Indian Ocean, and onto New Guinea. Reports of a bright fireball above Botswana, Africa, early Saturday evening match up with the predicted trajectory for the asteroid. The asteroid entered Earth’s atmosphere at the high speed of 10 miles per second (38,000 mph, or 17 kilometers per second) at about 16:44 UTC (9:44 a.m. PDT, 12:44 p.m. EDT,6:44 p.m. local Botswana time) and disintegrated several miles above the surface, creating a bright fireball that lit up the evening sky. The event was witnessed by a number of observers and was caught on webcam video.

When it was first detected, the asteroid was nearly as far away as the Moon’s orbit, although that was not initially known. The asteroid appeared as a streak in the series of time-exposure images taken by the Catalina telescope . As is the case for all asteroid-hunting projects, the data were quickly sent to the Minor Planet Center in Cambridge, Massachusetts, which calculated a preliminary trajectory indicating the possibility of an Earth impact. The data were in turn sent to the Center for Near-Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory in Pasadena, California, where the automated Scout system also found a high probability that the asteroid was on an impact trajectory. Automated alerts were sent out to the community of asteroid observers to obtain further observations, and to the Planetary Defense Coordination Office at NASA Headquarters in Washington. However, since the asteroid was determined to be so small and therefore harmless, no further impact alerts were issued by NASA.

The video at the link makes it appear that the asteroid has hit the ground, but that is not what happened.

The surface properties of 122 asteroids revealed

Using archive data produced by the Wide-field Infrared Explorer telescope (WISE, renamed NEOWISE) astronomers have been able to estimate the surface properties of 122 small asteroids located in the asteroid belt.

“Using archived data from the NEOWISE mission and our previously derived shape models, we were able to create highly detailed thermophysical models of 122 main belt asteroids,” said Hanuš, lead author of the paper. “We now have a better idea of the properties of the surface regolith and show that small asteroids, as well as fast rotating asteroids, have little, if any, dust covering their surfaces.” (Regolith is the term for the broken rocks and dust on the surface.)

It could be difficult for fast-rotating asteroids to retain very fine regolith grains because their low gravity and high spin rates tend to fling small particles off their surfaces and into space. Also, it could be that fast-rotating asteroids do not experience large temperature changes because the sun’s rays are more rapidly distributed across their surfaces. That would reduce or prevent the thermal cracking of an asteroid’s surface material that could cause the generation of fine grains of regolith. [emphasis mine]

If this conclusion holds, it means that mining these asteroids might be much easier. Dust can be a big problem, as it can clog up equipment and interfere with operations. It also acts to hide the underlying material, making it harder to find the good stuff.

Heavier astronauts more likely to have vision issues in zero-G

An analysis of the physical characteristics of astronauts who develop vision problems after long missions in weightlessness has found that heavier body weight increases the risk.

The research team examined data collected by NASA from astronauts who had made long-duration space flights (averaging 165 days). The data included the astronauts’ sex and pre-flight height, weight, waist and chest size, as well as information about post-flight eye changes. The findings were related to body weight, not body mass index. They found that none of the female astronauts analyzed—who weighed less than the males—returned to Earth with symptoms of SANS. To rule out sex differences as a cause for the disparity, the researchers also examined the men’s data separately. “Pre-flight weight, waist circumference and chest circumference were all significantly greater in those who developed either disc edema or choroidal folds. This was still true when only the male cohort was analyzed,” the researchers wrote. “The results from this study show a strong relationship between body weight and the development of ocular changes in space.”

That such small differences in weight can make such a difference suggests again that adding just a small amount of artificial gravity, rather than 1g, might mitigate these issues. No tests of this however have ever been done, mostly because the engineering is complex and expensive. For humans we would need to build a vessel large enough that any rotation would be unnoticed. If the vessel is small it must rotate faster and the body’s inner ear gets confused. However, if we only need to simulate a tiny amount of gravity the spin rate can be reduced, simplifying the engineering.

Dunes on Pluto?

Dunes on Pluto

Cool image time! Scientists reviewing images taken by New Horizons when it flew past Pluto in 2015 have discovered what appear to be dunes of methane on the icepack of nitrogen of Sputnik Planitia. The image on the right, cropped to post here, shows these dunes. You can see the full image if you click on it.

Following spatial analysis of the dunes and nearby wind streaks on the planet’s surface, as well as spectral and numerical modelling, scientists believe that sublimation (which converts solid nitrogen directly into a gas) results in sand-sized grains of methane being released into the environment.

These are then transported by Pluto’s moderate winds (which can reach between 30 and 40 kmh), with the border of the ice plain and mountain range providing the perfect location for such regular surface formations to appear.

The scientists also believe the undisturbed morphology of the dunes and their relationship with the underlying glacial ice suggests the features are likely to have been formed within the last 500,000 years, and possibly much more recently.

There remains a lot of uncertainty here. The features do look like dunes in the image, but it is also possible that other phenomenon not yet understood could have caused this pattern on the icepack surface. Also, the resolution of the image is not sufficient to really see detail at this level. A different process on the surface could be fooling our eyes.

Nonetheless, the scientists hypothesis makes sense, and fits the data known. It also demonstrates again that, even billions of miles from the Sun, in as alien an environment we can imagine, the planet Pluto is an active and complex place.

Astronomers identify giant exoplanets that might harbor habitable moons

Worlds without end: In reviewing the known exoplanets astronomers have identified more than a hundred giant exoplanets located in the habitable zone that might harbor habitable moons.

The researchers identified 121 giant planets that have orbits within the habitable zones of their stars. At more than three times the radii of the Earth, these gaseous planets are less common than terrestrial planets, but each is expected to host several large moons.

Scientists have speculated that exomoons might provide a favorable environment for life, perhaps even better than Earth. That’s because they receive energy not only from their star, but also from radiation reflected from their planet. Until now, no exomoons have been confirmed.

Using this new database scientists will optimize future instruments on both the ground and in space to look for and study the moons circling these exoplanets.

Radio telescope in Greenland sees first “light”

Astronomers have successfully initiated operations of a new radio telescope dish, the first ever located in Greenland.

The Greenland Telescope is a 12-meter radio antenna that was originally built as a prototype for the Atacama Large Millimeter/submillimeter Array (ALMA) North America. Once ALMA was operational in Chile, the telescope was repurposed to Greenland to take advantage of the near-ideal conditions of the Arctic to study the Universe at specific radio frequencies, collaborating with the National Radio Astronomy Observatory (NRAO) and MIT Haystack Observatory.

ASIAA led the effort to refurbish and rebuild the antenna to prepare it for the cold climate of Greenland’s ice sheet. In 2016, the telescope was shipped to the Thule Air Base in Greenland, 1,200 km inside the Arctic Circle, where it was reassembled at this coastal site. ASIAA also built receivers for the antenna. “It is extremely challenging to quickly and successfully set up a new telescope in such a cold environment, where temperatures fall below -30 degrees Celsius,” said Ming-Tang Chen from ASIAA and the Greenland Telescope project manager. “This is now one of the closest radio telescopes to the North Pole.”

They have also linked this radio telescope to others across the globe, helping to increase the resolution of any data these radio telescopes gather as a unit.

Max Planck scientists criticize institute for lack of support over animal rights

The coming dark age: The scientists at the Max Planck Society in Germany have written two letters criticizing the institute for its lack of support and its willingness to bow to animal rights protests.

It appears the scientists have followed all the rules, and have acted reasonably, but the longtime director of one of the Society’s main research divisions, Nikos Logothetis, was still indicted for the death of one monkey.

The struggle began in September 2014, when a German television channel aired footage taken by an undercover animal-welfare activist who had infiltrated Logothetis’s lab, purporting to show mistreatment of research monkeys.

Death threats and insults to Logothetis and his family followed — and in 2015, Logothetis decided to wind down his primate lab and replace it with a rodent facility. Events came to a head on 20 February this year, when Logothetis was indicted for allegedly violating animal-protection laws, after an animal-welfare group made complaints to police on the basis of the 2014 footage. Logothetis denies the charges. A trial date has not yet been set.

…The indictment follows contradictory judgements about Logothetis and his work at the MPI-Biocyb. Immediately after the September 2014 documentary was broadcast, an external specialist appointed by the MPS leadership found no welfare violations at MPI-Biocyb. But two months later, the German Animal Welfare Federation, a non-profit organization in Bonn, filed multiple complaints with police about animals at the institute.

In August last year, a local judge in Tubingen dismissed all but one charge; for that charge, allegedly delaying euthanasia in three rhesus monkeys, the judge offered an out-of-court settlement, which Logothetis accepted. But in October, prosecutors in the state capital, Stuttgart, overturned the settlement decision. They pursued the delayed-euthanasia case against Logothetis and two other staff members, who have not been publicly named, leading to their indictment in February.

Logothetis says that the decisions about whether and when to kill the monkeys, which contracted infections after surgery, were appropriate and complied with the law. Veterinary staff attempted to treat the infections, he says, and two of the monkeys recovered. The third was humanely killed when staff decided that it was unlikely to recover.

Despite this history, the Society’s management has removed Logothetis as director. It has also made the research division he headed persona non grata, causing harm to the other researchers who work there.

In response the scientists have submitted two different letters lambasting the actions of the Society, signed by dozens of its scientists.

MPI-Biocyb scientists take issue with the MPS’s decision to impose these sanctions on Logothetis before the case is considered by a court. “We are very upset that the society is failing to uphold the principle of innocence before guilt is proven,” says neuroscientist Hamid Noori, a junior group leader at MPI-Biocyb. “With this attitude, any activist can attack us freely, without consequence.”

Noori is one of four MPI-Biocyb scientists who spoke to Nature about the situation. Their criticisms are echoed in the two letters: the first, sent in December, was signed by 54 scientists; the second, sent in February, was signed by 94, a majority of those who work with animals at MPI-Biocyb, says Noori. The February letter describes “an extremely distressful situation” that “has seriously compromised our working conditions”.

In other words, even though the evidence strongly indicates that Logothetis followed the rules and did not act with malice towards the primates in his care, the Society has caved to the animal rights protesters.

This is the present, and the future. Someone with an ax to grind, usually from the left, will make a complaint, and everyone will bow to them out of cowardly fear, no matter how baseless or unproven the charge. Science research will stop, free speech will end, and an oppressive shadow will fall upon western civilization.

New impact craters on Mars

New impact crater on Mars

Cool image time! The high resolution camera on Mars Reconnaissance Orbiter (MRO) keeps finding recent impact craters, all of which the science team try to monitor periodically to see how the surface evolves over time. The image on the right, cropped to post here, is one such crater, the image taken in January 2018 and released with as one of the captioned images from this month’s image catalog release. If you click on the image you can see the full picture.

What is notable about this particular impact are the colors.

The new crater and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new crater will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter.

Those colors of course have importance to researchers, as they reveal the different materials found beneath the surface at this location, normally hidden by surface dust and debris.

Nor is this the only impact crater revealed in this month’s image release. Earlier in the month the science team highlighted an image that captured two small impacts. While all three of these impacts are in the general region called Elysium Planitia, they are not particularly close to each other. They are however surrounding the landing site for the InSight lander now heading to Mars. This last link takes you to my January 28, 2018 post detailing some information about this landing site, and also includes another recent crater impact, found at the center of the landing zone.

It is not clear if these recent impacts are related to each other. As noted by Alfred McEwen of the science team, “Often, a bolide breaks apart in the atmosphere and makes a tight cluster of new craters.” It could be that all these recent impacts came from the same bolide, which is why there appear to be a surplus of them in Elysium Planitia.

Then again, our surface survey of Mars is very incomplete. These impacts could simply be marking the normal impact rate for Mars. We will not know until we have completed a detail survey of all recent impacts on Mars, and have been able to date them all.

Who wants to do it?

Canada exits WFIRST project

Like rats fleeing a sinking ship: The Canadian government has decided not to fund that country’s contribution to NASA’s WFIRST space telescope project, presently expected to cost $3.2 billion total (already over-budget in the design phase) and set to launch sometime in the 2020s (don’t bet on it).

The Canadian instrument would have been focused on studying dark energy, the mysterious force that is theorized to cause the universe’s expansion rate to accelerate over vast distances.

I can understand the skepticism of the Canadian government. Why commit anything to a project that is already over-budget and has unreliable support in the U.S. (Trump tried to ax it, Congress restored it, for now)? The project is also so far in the future it makes more sense to spend this money on astronomy projects that could be built and used now.

Astronomers identify 25 stars that have or will come within 3 light years of Sun

Using the second data release from Gaia, astronomers have identified 25 stars that have or will come within 3 light years of Sun sometime within fifteen million years.

But the authors are confident that the 25 stars represent only a sliver of the actual encounters that have occurred over this time period. “They’re still just scratching the surface,” Mamajek agrees. That’s because the Gaia satellite eliminates low-mass stars (which are simply too faint to see at the moment) and high-mass stars (which are often so bright they saturate the satellite’s detectors) — thus limiting the data to stars that range between 0.5 and 1.3 times the mass of the Sun.

As such, the team suspects that they have only spotted 15% of all the encounters that likely pummel our solar system. “It’s a good first step, but one should not look at this as the final word,” Mamajek adds.

In reading their paper (available here), they identify three stars come come within a light year, therefore disturbing the theorized Oort Cloud of comets thought to exist at this distance from the Sun. One, Gliese 710, will do so in 1.3 million years..

Update on Hawaiian lava eruption

Link here. This news article is particularly informative, as it includes a map that outlines the extent of the lava flows and what they have engulfed, including the most recent flows that are threatening a geothermal power plant that has been providing the Big Island about 25% of its power.

“Lava flow from Fissures 7 and 21 crossed into PGV [Puna Geothermal Venture] property overnight and has now covered one well that was successfully plugged,” declared the Hawaii Civil Defense Agency in a statement released on Sunday, May 27 at 6:00 pm local time. “That well, along with a second well 100 feet [30 meters] away, are stable and secured, and are being monitored. Also due to preventative measures, neither well is expected to release any hydrogen sulfide.”

Those preventive measures included a complete shutdown of the geothermal plant, the capping of all 11 wells, and the removal of some 60,000 gallons of flammable liquid. Those precautions aside, this is the first time in history—as far as we know—that lava has ever engulfed a geothermal power plant, so it’s all uncharted territory. There’s fear that a rupture of the wells could set off an explosion, releasing hydrogen sulfide and other dangerous gasses into the environment. As of this posting, the lava flows on the PGV grounds have stopped moving.

Environmentalists often promote geothermal power as an alternative to fossil fuels. Environmentalists also sued to prevent this plant from being built because of its proximity to the volcano.

China loses contact with one of two lunar cubesats

China has lost contact with one of the two test cubesats that were launched to the moon with their Queqiao Chang’e-4 communications satellite.

Though they continue to receive telemetry from one cubesat, without the second they will be unable to do the radio astronomy and interferometry experiments planned.

The interferometry experiments would have seen the observations made simultaneously by the DSLWP/Longjiang microsatellites to be combined. The test would be verification of technology for a constellation of small, low-frequency radio astronomy satellites that would emulate a telescope with a size equal to the maximum separation between the satellites.

The Chang’e-4 mission could however see some interferometry tests carried out, with Queqiao carrying the Netherlands-China Low-frequency Explorer (NCLE) astronomy instrument, and a Low Frequency Spectrometer (LFS) on the Chang’e-4 lander, which is expected to launch in November or December, following testing of Queqiao.

All is not lost. The cubesat that still functions has a camera, built in Saudi Arabia, and if it takes and successfully transmits any pictures this will be a cubesat landmark, the first interplanetary images ever taken by a cubesat.

Meanwhile, Queqiao Change’-4 is working as expected, laying the ground work for the launch of the Chang’e-4 lander later this year.

New NOAA weather satellite has serious problem

Can’t anybody here play this game? The cooling unit required to take infrared images in the new NOAA weather satellite GOES-17, launched in March, is not functioning properly.

“This is a serious problem,” Volz said Wednesday in a conference call with reporters. “This is the premier Earth-pointing instrument on the GOES platform, and 16 channels, of which 13 are infrared or near-infrared, are important elements of our observing requirements, and if they are not functioning fully, it is a loss. It is a performance issue we have to address.”

Detectors for the infrared channels must be cooled to around 60 Kelvin (minus 351 degrees Fahrenheit) to make them fully sensitive to infrared light coming from Earth’s atmosphere. For about 12 hours each day, the cooler inside the Advanced Baseline Imager, or ABI, is unable to chill the detectors to such cold temperatures, officials said.

Infrared images from weather satellites are used to monitor storms at night, when darkness renders visible imagery unavailable. The three visible channels from the ABI are not affected by the cooling problem.

“The other wavelengths, the near-infrared and infrared wavelengths — the other 13 — need to be cooled to some extent beyond the capability of the system at present,” said Tim Walsh, NOAA’s program manager for the GOES-R weather satellite series. “There’s a portion of the day centered around satellite local midnight where the data is not usable, and that’s what we’re addressing.”

GOES-17 is the second of a four satellite constellation being built by NOAA costing $11 billion.

It appears that an identical cooling system was installed on the first of this satellite constellation, GOES-16, and has been working perfectly in orbit since November 2016. Why the new unit isn’t working remains a puzzle.

The real issue here is the cost and complexity of these satellites. Because they are so complex and take so long to build, replacing them is difficult if not impossible. Wouldn’t it be better to launch many cheaper satellites to provide redundancy at a lower cost?

This is a pattern we see throughout the government aerospace industry. NASA’s Webb and WFIRST telescopes are big and take decades to build. God forbid they fail at launch. SLS and Orion are big and take decades to build. God forbid they fail at launch. The Air Force’s numerous military satellites are big and take decades to build. God forbid an enemy takes one out.

In all these cases, failure means we get nothing after spending a lot of time and money. And replacing the loss will take years and billions of dollars.

Common sense says it is time to rethink this entire operation. Unfortunately, this is the federal government. The concept of rethinking anything, or even thinking at all, is too often a completely alien concept. I do not expect anything to change, unless we elect new people in Congress and the Presidency who are willing to take a hammer to this whole insane system and smash it bluntly. Trump is kind of this type of new person, but even he isn’t willing to change that much, only some things, such as the EPA, that irk him in particular. Otherwise, he has left much of the federal bureaucracy alone — as can be seen by his administration and NASA both gearing up to fund both LOP-G and WFIRST— thus continuing this pattern of big and expensive projects that take forever to build.

Mars rover update: May 23, 2018

Summary: Curiosity drives down off of Vera Rubin Ridge to do drilling in lower Murray Formation geology unit, while Opportunity continues to puzzle over the formation process that created Perseverance Valley in the rim of Endeavour Crater.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's travels on and off Vera Rubin Ridge

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my April 27, 2018 update, Curiosity has continued its downward trek off of Vera Rubin Ridge back in the direction from which it came. The annotated traverse map to the right, cropped and taken from the rover’s most recent full traverse map, shows the rover’s recent circuitous route with the yellow dotted line. The red dotted line shows the originally planned route off of Vera Rubin Ridge, which they have presently bypassed.

It appears they have had several reasons for returning to the Murray Formation below the Hematite Unit on Vera Rubin Ridge. First, it appears they wanted to get more data about the geological layers just below the Hematite Unit, including the layer immediately below, dubbed the Blunts Point member.

While this is certainly their main goal, I also suspect that they wanted to find a good and relatively easy drilling candidate to test their new drill technique. The last two times they tested this new technique, which bypasses the drill’s stuck feed mechanism by having the robot arm itself push the drill bit against the rock, the drilling did not succeed. It appeared the force applied by the robot arm to push the drill into the rock was not sufficient. The rock was too hard.

In these first attempts, however, they only used the drill’s rotation to drill, thus reducing the stress on the robot arm. The rotation however was insufficient. Thus, they decided with the next drill attempt to add the drill’s “percussion” capability, where it would not only rotate but also repeatedly pound up and down, the way a standard hammer drill works on Earth.

I suspect that they are proceeding carefully with this because this new technique places stress the operation of the robot arm, something they absolutely do not want to lose. By leaving Vera Rubin Ridge they return to the more delicate and softer materials already explored in the Murray Formation. This is very clear in the photo below, cropped from the original to post here, showing the boulder they have chosen to drill into, dubbed “Duluth,” with the successful drill hole to the right.
» Read more

Drilling success for Curiosity

For the first time in more than a year, Curiosity has successfully used its drill to obtain a sample from beneath the surface of Mars.

Curiosity tested percussive drilling this past weekend, penetrating about 2 inches (50 millimeters) into a target called “Duluth.”

NASA’s Jet Propulsion Laboratory in Pasadena, California, has been testing this drilling technique since a mechanical problem took Curiosity’s drill offline in December of 2016. This technique, called Feed Extended Drilling, keeps the drill’s bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like the way a human would drill into a wall at home.

I plan to post a rover update either today or tomorrow, with more details about this success. Stay tuned!

1 125 126 127 128 129 274