Dawn finds recent changes on Ceres

New data from Dawn has found at least one spot on Ceres where recent changes appear to have occurred on the surface.

Observations obtained by the visible and infrared mapping spectrometer (VIR) on the Dawn spacecraft previously found water ice in a dozen sites on Ceres. The new study revealed the abundance of ice on the northern wall of Juling Crater, a crater 12 miles (20 kilometers) in diameter. The new observations, conducted from April through October 2016, show an increase in the amount of ice on the crater wall. “This is the first direct detection of change on the surface of Ceres,” said Andrea Raponi of the Institute of Astrophysics and Planetary Science in Rome.

Raponi led the new study, which found changes in the amount of ice exposed on the dwarf planet. “The combination of Ceres moving closer to the sun in its orbit, along with seasonal change, triggers the release of water vapor from the subsurface, which then condenses on the cold crater wall. This causes an increase in the amount of exposed ice. The warming might also cause landslides on the crater walls that expose fresh ice patches.”

There is a certain irony here. For eons, the only alien body that humans were able to get a good look at, the Moon, was also an object where almost nothing changed. Even today, after humans have visited its surface and numerous orbiting spacecraft have photographed its surface in numbing detail, the Moon has generally been found to be stable and unchanging. Though impacts do occur, and the surface does evolve over time, the Moon is probably one of the most static bodies in the solar system.

The irony is that this lunar stability gave us an incorrect impression of the rest of the solar system. Based on the Moon, it was assumed that airless or almost airless bodies like Mercury, Mars, Pluto, the large moons of Jupiter and Saturn, and asteroids like Ceres would also be stable and unchanging. What we have instead found is that the Moon is the exception that proves the rule. Most of these other worlds are unlike the Moon. They show a lot of surface evolution, over relatively short time scales. They change.

Kepler to run out of fuel in the coming months

After nine years of success, the Kepler space telescope is running out of fuel, which will force an end to the mission sometime in the next several months.

The Kepler team is planning to collect as much science data as possible in its remaining time and beam it back to Earth before the loss of the fuel-powered thrusters means that we can’t aim the spacecraft for data transfer. We even have plans to take some final calibration data with the last bit of fuel, if the opportunity presents itself.

Without a gas gauge, we have been monitoring the spacecraft for warning signs of low fuel— such as a drop in the fuel tank’s pressure and changes in the performance of the thrusters. But in the end, we only have an estimate – not precise knowledge. Taking these measurements helps us decide how long we can comfortably keep collecting scientific data.

They are doing a dance here. If they run out of fuel while collecting data, that data will be lost. If they stop collecting data too soon, however, to transmit it to Earth, they will not maximize the data obtained.

Meanwhile, the next exoplanet hunter, TESS, is scheduled for launch on April 16 on a Falcon 9 rocket.

Chandra looks back at the Crab Nebula

Link here. It is almost twenty years since the Chandra X-Ray Observatory was launched, and in celebration the science team have released another X-ray image of the Crab Nebula, taken in 2017 in league with an optical image from the Hubble Space Telescope and an infrared image from the Spitzer Space Telescope. They have also provided links to all similar past images, going back to 1999.

Some of the images are actually videos, in 2002 and 2011, showing the Crab’s dynamic nature. You can actually see flares and waves of radiation rippling out from its center.

New Horizons team picks Ultima Thule as nickname for 2014 MU69

In their continuing effort to give interesting names to their targets, the New Horizons team has chosen the name Ultima Thule for 2014 MU69, the Kuiper Belt object it will fly past on January 1, 2019.

With substantial public input, the team has chosen “Ultima Thule” (pronounced ultima thoo-lee”) for the Kuiper Belt object the New Horizons spacecraft will explore on Jan. 1, 2019. Officially known as 2014 MU69, the object, which orbits a billion miles beyond Pluto, will be the most primitive world ever observed by spacecraft – in the farthest planetary encounter in history.

Thule was a mythical, far-northern island in medieval literature and cartography. Ultima Thule means “beyond Thule”– beyond the borders of the known world—symbolizing the exploration of the distant Kuiper Belt and Kuiper Belt objects that New Horizons is performing, something never before done.

“MU69 is humanity’s next Ultima Thule,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute in Boulder, Colorado. “Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”

Their spacecraft will be the first to see this object up close. It is their right to name it. And if the International Astronomical Union objects, they can go to hell. I guarantee that future generations of space-farers will know this tiny world by this name, and this name alone.

An even more spectacular movie of Jupiter’s storms

Cool image time! Yesterday I posted a short gif created by citizen scientist Gerald Eichstädt, using twelve Juno images, that showed some cloud changes over time. Today, I discovered that Eichstädt has created an even more spectacular movie, which I have embedded below the fold, based on images taken during Juno’s tenth close fly-by.

This movie shows the short-term dynamics Jupiter’s southern storms derived from raw JunoCam images of Juno’s Perijove-10 flyby on Dec 16, 2017.

You might also notice the effect of changing solar illumination on the appearance of the haze bands. JunoCam usually takes a time-lapse sequence of images during each perijove showing Jupiter’s polar regions. These images are taken from different perspectives along Juno’s trajectory. But it’s possible to reproject the JunoCam images to a common perspective. Displaying such a sequence rapidly reveals cloud motion in Jupiter’s storm systems.

This movie applies this technique. At the same time, it is changing the simulated perspective along Juno’s trajectory. The same short sequence of images is displayed in a loop, but due to the changing way of reprojecting the raw images, the shown surface area is changing more or less continuously.

Eichstädt warns that the blinking nature of the film might make it unsuitable for those with epilepsy. If this is not an issue for you, you should then definitely take a look.
» Read more

A Juno movie of cloud motions

Cool image time! Citizen scientist Gerald Eichstädt, using twelve Juno images, has compiled a short gif movie that shows a tiny amount of cloud movement.

I think this is one of the first times Juno has show us even a tiny bit of cloud evolution, information that is essential for gaining a true understanding of Jupiter’s slightly less than 2000 mile deep atmosphere. To see it, go to the link. As Eichstadt notes, “Individual images are noisy, but we see cloud motion.”

When you watch, zoom in on the upper right quarter. This is the area that the cloud motion is seen best.

Martian craters go splat!

Overview of the volcanic Tharsis Bulge on Mars

Cool image time! In continuing my exploration of this month’s Mars Reconnaissance Orbiter (MRO) image release, I found two interesting images of small craters, one as part of that image release, the other found completely by accident.

The map on the right, taken from the MRO HiRISE archive page, shows the locations of these two images. Both are located in the lava plains that surround the giant volcano Pavonis Mons, the central volcano of the three volcanoes to the east of Olympus Mons. Previously, I have done posts focusing specifically on both Pavonis Mons and Arsia Mons. Not only is the geology of these gigantic volcanoes fascinating, there is evidence that ancient glacial ice lurks in lava tubes on their slopes, making them potentially prime real estate for future explorers.

The first image, labeled #1 on the image above, was taken in January 2018 to get a better look at a small crater on the surrounding lava plains, and was part of the MRO March image release. I have cropped it to post here, focusing on the crater itself.

My first reaction on seeing the image was, “Did this impact not go splat when it hit?”
» Read more

Jupiter has a 1,900 mile deep atmosphere

The uncertainty of science: New results from Juno reveal that the jet-stream-type bands visible on the surface extend down to 1,900 miles, deeper than expected. Below that,

…the planet rotates nearly as a rigid body.”This is really an amazing result, and future measurements by Juno will help us understand how the transition works between the weather layer and the rigid body below,” said Tristan Guillot, a Juno co-investigator from the Université Côte d’Azur, Nice, France, and lead author of the paper on Jupiter’s deep interior. “Juno’s discovery has implications for other worlds in our solar system and beyond. Our results imply that the outer differentially-rotating region should be at least three times deeper in Saturn and shallower in massive giant planets and brown dwarf stars.”

Scientists had not expected the atmosphere go that deep.

Other results show that that the gas giant’s complex polar regions are surprising as well.

Its north pole is dominated by a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers) across. Jupiter’s south pole also contains a central cyclone, but it is surrounded by five cyclones with diameters ranging from 3,500 to 4,300 miles (5,600 to 7,000 kilometers) in diameter. Almost all the polar cyclones, at both poles, are so densely packed that their spiral arms come in contact with adjacent cyclones. However, as tightly spaced as the cyclones are, they have remained distinct, with individual morphologies over the seven months of observations detailed in the paper.

“The question is, why do they not merge?” said Adriani. “We know with Cassini data that Saturn has a single cyclonic vortex at each pole. We are beginning to realize that not all gas giants are created equal.”

I am always baffled when scientists are surprised at the infinite variety of the universe. It is absurd to assume Jupiter and Saturn would be alike, especially considering the history of solar system exploration since the dawn of the space age. Since the first probe got a close look at the Moon, every single new object observed has been completely different from every other previously observed object. Every object has been unique. None have been the same.

Jupiter should be no different. And I guarantee that the next fifty gas giants we finally get a close look at out there among the stars will be as different from each other as they are from Jupiter. It is going to take a lot of exploration for us to finally get a handle on the overall patterns of planetary formation.

ESA successfully tests an air-breathing ion thruster

Engineers from the European Space Agency (ESA) and an Italian company have successfully tested a prototype of an ion engine that would obtain its fuel from the thin atmosphere available in low Earth orbit, thus allowing it to operate practically indefinitely.

From the press release:

Replacing onboard propellant with atmospheric molecules would create a new class of satellites able to operate in very low orbits for long periods. Air-breathing electric thrusters could also be used at the outer fringes of atmospheres of other planets, drawing on the carbon dioxide of Mars, for instance. “This project began with a novel design to scoop up air molecules as propellant from the top of Earth’s atmosphere at around 200 km altitude with a typical speed of 7.8 km/s,” explains ESA’s Louis Walpot.

Think about it. You supply your planetary probe one or more of these engines, and once it reaches orbit around its target it has an unlimited fuel supply to do research just about forever. More important, such technology when further refined is going to enhance human exploration as well. For example, rather than use the atmosphere at it arrives, later designs could simply dive into the atmosphere to get the spaceship’s tank refilled. Such engines would make spacecraft free from the tether of Earth.

Sunspot update for February 2018

It’s time for my monthly sunspot update. On Sunday NOAA posted its monthly update of the solar cycle, covering sunspot activity for February 2018. Below the fold is my annotated version of that graph.

Sunspot activity in February continued the low activity seen in November, December, and January, with November 2017 still the most inactive month for sunspots since the middle of 2009. In fact, the low activity we are seeing now is somewhat comparable to the low activity seen during the ramp down to solar minimum in the first half of 2008. By the end of that year we had hit solar minimum, the deepest and longest in a hundred years, suggesting that we might even hit solar minimum before the end of this year. That would have this happen at least a year earlier than all predictions.
» Read more

More weird Mars geology

Low resolution of full image of crater

Cool image time! Yesterday the Mars Reconnaissance Orbiter team released 460 images taken by the spacecraft’s high resolution camera, HiRISE, as part of their normal and routine image release program. Obsessed with space exploration as I am, I like to scan through these new images to see if there is anything interesting hidden there that will show up eventually in a press release. For example, the first image in this release is a look at Vera Rubin Ridge and Curiosity. I would not be surprised if there is a press release soon using this image, probably aimed at outlining the rover’s future route up Mount Sharp. (The present overview traverse map is getting out of date.)

Sometimes however I find images that might never get a press release but probably deserve it. The image on the right, reduced in resolution to show here, is one such example. It is a strip taken from rim to rim across an unnamed crater located in the mid-northern latitudes of Mars, west of Olympus Mons. A review of past images by other Mars orbiters/probes suggests that no good high resolution image of this crater had ever been taken before.

If you click on the image on the right, or go to the actual image site, you can see the original in full resolution. It is definitely worthwhile doing this, because the strip shows some strange and inexplicable geology on the floor of the crater as well in its confusing central peak region. Numerous features appear to have been exposed by later erosion. The many small craters for example are I think what planetary geologists call pedestal craters. The surrounding terrain is less erosion-resistant, so as that terrain erodes away it leaves the crater behind, with its floor actually sitting higher than the surrounding flats.

What makes these craters even weirder however is that their rims appear to have eroded away even more than the surrounding terrain, so that all of these small craters (assuming that is what they are) have ringlike depressions surrounding a circular platform.

In the crater’s central peak region the terrain is even more strange. Sticking up out of the ground are some arched short ridgelines, which appear to have been exposed by erosion. That peak area however also has many strange flow features that I find completely baffling. It almost appears to me that as the molten peak area started to solidify after impact, someone went in with a stirring spoon and did some mixing!

The map below the fold provides the location context for this crater, with the crater’s location indicated by the arrow.
» Read more

Methane detected on Enceladus could come from microbes

The uncertainty of science: New research has found that the methane that Cassini detected being released from Enceladus’s interior could conceivably come from at least one Earth-type microbe.

Using various mixtures of gases held at a range of temperatures and pressures in enclosed chambers called “bioreactors,” Rittmann and his co-authors cultivated three microorganisms belonging to the oldest branch of Earth’s tree of life, known as Archaea. In particular, they focused on Archaean microbes that are also methanogens, which are able to live without oxygen and produce methane from that anaerobic metabolism. The team examined the simplest types of microbes, which could be the primary producers of methane at the base of a possibly more complex ecological food chain within the moon.

They tried to simulate the conditions that could exist within and around Enceladus’s hydrothermal vents, which are thought to resemble those found at a few deep-sea sites on Earth, often near volcanically active mid-oceanic ridges. According to their tests, only one candidate, the deep-sea microbe Methanothermococcus okinawensis, could grow there—even in the presence of compounds such as ammonia and carbon monoxide, which hinder the growth of other similar organisms.

There are a lot of fake news stories today trumpeting this result as proof that alien microbes can exist on Enceladus. The data does no such thing. All it shows that one methane producing microbe could possibly live in an environment that researchers guess might somewhat resemble the situation on Enceladus. However, as the article admits,

Scientists do not really know the precise conditions on Enceladus yet, of course. And in any case it is possible any life there, if it exists, is nothing like any DNA-based organism on our planet, rendering our Earth-based extrapolations moot. What’s more, these findings only show microbial life might exist in one particular subset of possible environments within the moon’s dark ocean.

This result is interesting, but it really proves nothing about Enceladus itself.

New backers to run Arecibo

The National Science Foundation this week revealed the make-up of the consortium that is taking over the operation of the Arecibo radio telescope in Puerto Rico.

The new agreement is valued at $20.15 million over five years, subject to the availability of funds, and is scheduled to begin April 1, according to the statement.

The new partnership represents a mixture of academic and corporate interests. The Universidad Metropolitana in San Juan, Puerto Rico, and Yang Enterprises Inc. in Oviedo, Florida, will partner with [the University of Central Florida] to manage the observatory. The team plans to expand the capabilities of the telescope, officials said.

This relieves the National Science Foundation (and the taxpayers) of the the cost burden for this facility, at least directly.

Hubble finds new figure for universe expansion rate

The uncertainty of science: Using data from the Hubble Space Telescope astronomers have found evidence that universe’s expansion rate is faster than estimated in previous measurements.

The new findings show that eight Cepheid variables in our Milky Way galaxy are up to 10 times farther away than any previously analyzed star of this kind. Those Cepheids are more challenging to measure than others because they reside between 6,000 and 12,000 light-years from Earth. To handle that distance, the researchers developed a new scanning technique that allowed the Hubble Space Telescope to periodically measure a star’s position at a rate of 1,000 times per minute, thus increasing the accuracy of the stars’ true brightness and distance, according to the statement.

The researchers compared their findings to earlier data from the European Space Agency’s (ESA) Planck satellite. During its four-year mission, the Planck satellite mapped leftover radiation from the Big Bang, also known as the cosmic microwave background. The Planck data revealed a Hubble constant between 67 and 69 kilometers per second per megaparsec. (A megaparsec is roughly 3 million light-years.)

However, the Planck data gives a constant about 9 percent lower than that of the new Hubble measurements, which estimate that the universe is expanding at 73 kilometers per second per megaparsec, therefore suggesting that galaxies are moving faster than expected, according to the statement.

“Both results have been tested multiple ways, so barring a series of unrelated mistakes, it is increasingly likely that this is not a bug but a feature of the universe,” Riess said. [emphasis mine]

I should point out that one of the first big results from Hubble in 1995 (which also happened to be the subject one of my early published stories), the estimate then for the Hubble constant was 80 kilometers per second per megaparsec. At the time, the astronomers who did the research were very certain they had it right. Others have theorized that the number could be as low as 30 kilometers per second per megaparsec.

What is important about this number is that it determines how long ago the Big Bang is thought to have occurred. Lower numbers mean it took place farther in the past. Higher numbers mean the universe is very young.

That scientists keep getting different results only suggests to me that they simply do not yet have enough data to lock the number down firmly.

Microbes found that survive in the driest desert on Earth

Scientists have found that certain microbes can remain dormant for years in the Atacama Desert and then come to life during the rare times water is available.

The Atacama Desert stretches inland 1000 kilometers from the Pacific coast of Chile, and rainfall can be as low as 8 millimeters per year. There’s so little precipitation that there’s very little weathering, so over time the surface has built up a crusty layer of salts, further discouraging life there. “You can drive for 100 kilometers and not see anything like a blade of grass,” Neilson says. Although she and others have found some bacteria there, many biologists have argued that those microbes are not full-time residents, but were blown in, where they die a slow death.

But that didn’t deter Dirk Schulze-Makuch, an astrobiologist at the Technical University of Berlin. “I like to go to places where people say nothing is alive,” he says. “We decided to take a shotgun approach and throw all the new [analytical] approaches at everything—fungi, bacteria, viruses”—that might be there. He and his team collected samples from eight places in the Atacama—from the coast eastward to the driest places—over 3 years. They first gathered material a month after a record-setting rain in 2015, and then followed up with yearly collections in some of the same places in 2016 and 2017. They sequenced all the copies of a gene known to distinguish microbial species to determine what was in those samples and even recovered some full genomes. The researchers also did a test to determine the proportion of DNA that came from intact, living cells. Finally, they assessed the amount of cellular activity; of adenosine triphosphate (ATP), a molecule the fuels this activity; and of byproducts—including fatty acids and protein building blocks—that resulted from that activity to look for additional evidence of life.

The coastal samples contained the most number and diversity of microbes, but in 2015, there were signs of life even in the driest spots, Schulze-Makuch and his colleagues report today in the Proceedings of the National Academy of Sciences. “Following a rainfall event, there is a flush of activity and [cells] are replicating,” Neilson says.

The researchers, as well as the article, push the idea that this result makes life on Mars more possible, but I think that is pushing things quite a bit. The Earth is so filled with life that to find a spot that doesn’t have life on it is almost impossible. The odds work in the favor of hardy life in difficult places. Mars however appears generally lifeless, which makes the odds of there being life more unlikely. Moreover, while the Atacama has many similarities to Mars, the differences are quite profound. To extrapolate any possibilities to Mars from this research is a big overstatement.

Identifying the mysterious dark bands in Venus’s atmosphere

The uncertainty of science: Scientists have now proposed two new best candidates for the unknown major component in Venus’s upper atmosphere that was first identified in 1974 when Mariner 10 took the first good close-up images.

We have analyzed spectra taken during the second Venus flyby of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft on its route to Mercury, in 2007. Using a numerical code, we have reproduced the light reflected by the equatorial atmosphere of the planet and retrieved the distribution of particles in the upper atmosphere of Venus, with a cloud top of some 75 km above the surface. We have also retrieved the absorption spectrum of the puzzling absorber and compared it with some previously proposed candidates. While no perfect match is found, sulfur-bearing species (S2O and S2O2) provide the best agreement. There is still a long way to undoubtedly identify Venus’s UV absorber, but this work provides substantial spectral constraints.

The dark absorber shows up as dark streaks in the upper atmosphere, and allows images to track wind and cloud movement. No one has been able to firmly identify it.

S2O and S2O2 are disulfur monoxide and disulfur dioxide respectively, both of which are unstable on Earth. The first is thought to have been detected in Io’s numerous volcanic eruptions, with it settling as a solid around at least one volcano, Pele. The second has already been suggested as the dark absorber. This research helps confirm that earlier research.

Note however that other research says there is too little sulfur in Venus’s atmosphere for this to be its dark absorber. The science here therefore remains decidedly unsettled.

Mars Reconnaissance Orbiter in safe mode

After detecting low battery voltage, Mars Reconnaissance Orbiter (MRO) went into safe mode on February 15.

The orbiter is solar-powered but relies on a pair of nickel-hydrogen batteries during periods when it is in the shadow of Mars for a portion of each orbit. The two are used together, maintaining almost identical charge during normal operations.

The spacecraft remains in communication with Earth and has been maintaining safe, stable temperatures and power, but has suspended its science observations and its service as a communications relay for Mars rovers. Normal voltage has been restored, and the spacecraft is being monitored continuously until the troubleshooting is complete.

It appears that all is under control. If MRO goes down, however it will a big loss for Mars research, as the spacecraft not only produces the highest resolution images of the ground, it also acts as one of several communications satellites between the Earth and the rovers on Mars. With two rovers there now, and at least two more planned for arrival in 2020, the loss of this communications link would be crippling.

Aligned erosion lines of Perseverance Valley

The uncertainty of science: Last week, while I was flying to Israel, the Opportunity science team announced the discovery of strange aligned erosion lines, what they are calling stone stripes, in Perseverance Valley.

The ground texture seen in recent images from the rover resembles a smudged version of very distinctive stone stripes on some mountain slopes on Earth that result from repeated cycles of freezing and thawing of wet soil. But it might also be due to wind, downhill transport, other processes or a combination.

…On some slopes within the valley, the soil and gravel particles appear to have become organized into narrow rows or corrugations, parallel to the slope, alternating between rows with more gravel and rows with less.

The origin of the whole valley is uncertain. Rover-team scientists are analyzing various clues that suggest actions of water, wind or ice. They are also considering a range of possible explanations for the stripes, and remain uncertain about whether this texture results from processes of relatively modern Mars or a much older Mars.

For those who are regular readers of Behind the Black, you already knew about a variation of this discovery back in November 2017, from my regular rover updates. Then, they discovered aligned groves in the gravel that looked to me like slickensides, erosion patterns produced by glacial activity. The science team told me, however, that they were favoring wind, not ice, as a primary cause, though that conclusion was far from certain.

In the press release last week, they focused more on the aligned erosion patterns in the fine gravel that appear to align perpendicular to the slope. Though they think they have found a comparable Earth-based phenomenon that might explain these patterns, it appears that the science team remains just as unsure of their cause as they are for the rocks.

Bitcoin-type crypto-currencies slowing SETI search for ET

The mad craze for crypto-currencies like Bitcoin is actually slowing the ability of SETI to obtain the computer chips they need, thus preventing them from expanding their search for alien signals.

Seti (Search for Extraterrestrial Intelligence) researchers want to expand operations at two observatories. However, they have found that key computer chips are in short supply. “We’d like to use the latest GPUs [graphics processing units]… and we can’t get ’em,” said Dan Werthimer.

Demand for GPUs has soared recently thanks to crypto-currency mining. “That’s limiting our search for extra-terrestrials, to try to answer the question, ‘Are we alone? Is there anybody out there?’,” Dr Werthimer told the BBC. “This is a new problem, it’s only happened on orders we’ve been trying to make in the last couple of months.”

Mining a currency such as Bitcoin or Ethereum involves connecting computers to a global network and using them to solve complex mathematical puzzles. This forms part of the process of validating transactions made by people who use the currency. As a reward for this work, the miners receive a small crypto-currency payment, making it potentially profitable.

Crypto-currencies like Bitcoin remind me of the tulip craze of the early 1800s. They have no real value, are not tied to any country and its wealth, and thus are essentially a speculator’s fantasy. A lot of people playing this game are going to be hurt by it eventually.

Posted from Modi’im Ilit, the West Bank. See this essay by me for some background about this place from my previous visits.

Massive flow on Mars

Massive flow on Mars

Cool image time! The image on the right, cropped to post here, comes from a Mars Reconnaissance Orbiter image that shows a massive relatively recent and dark slope streak that emanates out from a single point on the surface. (Note that the release at this link rotates the image so that north points down. I have rotated back so that north points up.)

Streaks form on slopes when dust cascades downhill. The dark streak is an area of less dust compared to the brighter and reddish surroundings. What triggers these avalanches is not known, but might be related to sudden warming of the surface.

These streaks are often diverted by the terrain they flow down. This one has split into many smaller streaks where it encountered minor obstacles. These streaks fade away over decades as more dust slowly settles out of the Martian sky.

Point of origin for flow

Location of flow, west of Olympus Mons

The MRO release focuses on the fingerlike breakup of the flow as it descends into sand-dune filled plain. What is more interesting to me is the terrain where this flow originated. A close-up of that area from the full image, shown on the right, reveals a feature that could be a wash running in line with the flow’s origin, and leading uphill to a dark feature that is a likely a cliff face. (The light in this image is coming from the southeast.)

This location, at 15.2N latitude, 214.9E longitude and shown by the small cross in the image on the right and captured from this page, is west of Olympus Mons, the largest volcano on Mars. This suggests to me that the originating feature might be an outlet from a lava tube, from which water suddenly seeped out to produce this massive slope streak. A look at the mesa from which this flow came, cropped from the full image and posted below the fold, shows numerous similar slope streaks of varying ages flowing out of this mesa, with some very faint because they occurred farther in the past. Some are even within the bowl at the top of the mesa.

Whether these come from lava tubes is definitely unclear, and I suspect I will be told by geologists not likely. The seeps however do suggest strongly that this mesa might be a very good location for future colonists to look for underground water ice. Since clouds form on the western slopes of Arsia Mons, the southernmost of the three giant volcanoes to the east of Olympus Mons, and that past glacial activity has been documented there, I wonder if some of these same conditions might also exist here, on the nearby terrain west of Olympus Mons.
» Read more

Trump to propose transitioning ISS to private hands post 2024

It appears that the Trump administration will propose in its 2019 budget, to be released today, to cease funding ISS in 2024 but to aim at a full transition to private control so that the station is not de-orbited when federal funding ceases.

The approach the administration has chosen is one that would end NASA funding of the ISS in 2025, while offering support for the development of commercial successors. “In support of enabling a timely development and transition of commercial capabilities in LEO where NASA could be one of many customers in the mid-2020s, the Administration is proposing to end direct Federal support for the ISS in 2025 under the current NASA-directed operating model,” the document states.

The 2019 budget proposal will offer $150 million “to enable the development and maturation of commercial entities and capabilities which will ensure that commercial successors to the ISS – potentially including elements of the ISS – are operational when they are needed.” The document says “increasing investments” above that $150 million will be included in future years’ budget requests.

The end of federal funding for the ISS would not necessarily mean the end of the station, or at least some parts of it, according to the document. “[I]t is possible that industry could continue to operate certain elements or capabilities of the ISS as part of a future commercial platform,” it states.

Not surprisingly, there are already hints that there will be massive opposition to such a plan, as it will shift power (and responsibility) from the government to private contractors. Some in Washington will not want the government to lose that power. And some private contractors are simply unwilling to shoulder the responsibility for figuring out how to make money from the station, something that is certainly possible since the development costs will have been fully paid for by the taxpayer.

Interstellar object Oumuamua tumbling chaotically

A new analysis of the data obtained when the interstellar object Oumuamua flew through the solar system in October 2016 suggests that it is tumbling in a chaotic manner, and that the surface is spotty.

Straight away, they discovered that ‘Oumuamua wasn’t spinning periodically like most of the small asteroids and bodies that we see in our solar system. Instead, it is tumbling, or spinning chaotically, and could have been for many billions of years.

While it is difficult to pinpoint the exact reason for this, it is thought that `Oumuamua impacted with another asteroid before it was fiercely thrown out of its system and into interstellar space. Dr Fraser explains: “Our modelling of this body suggests the tumbling will last for many billions of years to hundreds of billions of years before internal stresses cause it to rotate normally again.

To me, this data settles the question about whether Oumuamua is not an artificial structure. It is not. If it were, an impact that would have caused this kind of tumbling would have almost certainly destroyed it. Instead, it likely broke the original bolide up, producing many fragments, including Oumuamua and its elongated shape.

As for the object’s spottiness:

Dr Fraser explains: “Most of the surface reflects neutrally but one of its long faces has a large red region. This argues for broad compositional variations, which is unusual for such a small body.”

It is really a shame we couldn’t get a closer look before it sped away.

Narwhals love glaciers!

New research tracking fifteen narwhals over four years has revealed that they like to hang out near glaciers that are stable and do not have many calving events.

To better understand what glacier features narwhals prefer, Laidre and her colleagues used data from 15 narwhals outfitted with recorders that tracked each animal’s movements over four years in the 1990s and 2000s in Greenland’s Melville Bay, where narwhals congregate in summer. They combined this data with information about glaciers in Melville Bay over the same time period.

The researchers examined how narwhals behaved at the glaciers and collected information about each glacier’s physical properties to create models of narwhal behavior and tease out the animals’ preferences. “Narwhals like slow-moving, big walls of ice where conditions are still and serene instead of a lot of runoff and disturbance,” Laidre said.

The researchers don’t know why the narwhals prefer these glaciers. They think the freshwater could shock small marine critters that are food for fish, which narwhals eat. Narwhals are also close relatives of beluga whales, which also seek out freshwater in summer to shed their skin, and it is possible there is something similar going on at the glacier front, Laidre said.

This is fascinating research. What is especially refreshing about it is that the press release makes no mention of global warming, a omission that is proper but increasingly rare in the politicized science community.

New Horizons takes the most distant pictures from Earth ever taken

Kuiper Belt Object 2012 HE85

The New Horizons science team has released three images taken by the spacecraft from almost 3.8 billion miles from Earth, the most distant images ever taken.

The routine calibration frame of the “Wishing Well” galactic open star cluster, made by the Long Range Reconnaissance Imager (LORRI) on Dec. 5, was taken when New Horizons was 3.79 billion miles (6.12 billion kilometers, or 40.9 astronomical units) from Earth – making it, for a time, the farthest image ever made from Earth.

…LORRI broke its own record just two hours later with images of Kuiper Belt objects 2012 HZ84 and 2012 HE85 – further demonstrating how nothing stands still when you’re covering more than 700,000 miles (1.1 million kilometers) of space each day.

The images themselves are not spectacular to look at, though the two images of two different Kuiper Belt objects are the best ever taken of such objects, and certainly contain data that scientists will be able to use. The image on the right is one of these objects, 2012 HE85. For example, note how it does not appear to be round.

This exercise is in preparation for the January 1, 2019 fly-by of 2014 MU69, where the images will be sharp and detailed, and provide us a good look at such a distant object.

Mars rover update: February 8, 2018

Summary: Curiosity remains on Vera Rubin Ridge, though it has begun moving toward the point where it will move down off the ridge. Opportunity remains in Perseverance Valley, though it has finally taken the north fork down.

Before providing today’s update, I have decided it is time to provide links to all previous updates, in chronological order. This will allow my new readers to catch up and have a better understanding of where each rover is, where each is heading, and what fascinating things they have seen in the past year and a half.

These updates began when I decided to figure out the overall context of Curiosity’s travels, which resulted in my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. Then, when Curiosity started to travel through the fascinating and rough Murray Buttes terrain in the summer of 2016, I stated to post regular updates. To understand the press releases from NASA on the rover’s discoveries it is really necessary to understand the larger picture, which is what these updates provide. Soon, I added Opportunity to the updates, with the larger context of its recent travels along the rim of Endeavour Crater explained in my May 15, 2017 rover update.

Now to talk about the most recent news from both rovers!
» Read more

More evidence of data tampering at NOAA

A close review of NOAA’s historic temperature data for New York shows that the agency appears to have been adjusting its records to cool past records or warm recent ones, without any explanation.

The author took a look at NOAA’s graph this year showing New York’s average January temperatures going back to 1890, and noticed that, according to that graph, 1943 was 0.9 degrees Fahrenheit warmer than 2014. Yet, a close look at the actual data from 1943 strongly suggested that 1943 was actually 2.7F warmer, not 0.9F. Somehow, NOAA had adjusted the numbers, either in 1943 or in 2014, to make the present warmer or the past colder. Further analysis, removing the one station that appears to have experienced the most heat island influence, thus distorting its long term record, suggested the adjustments might actually be worse.

These results, while certainly not covering all weather stations and years, are still consistent with every other close look at NOAA’s adjustments. Those adjustments always cool the past and warm the present, so as to provide confirmation of the theory of global warming. More important, there is never any explanation for those adjustments.

Of the seven sites, six have remained at the same locations, within a few yards. The station at Auburn has moved by a couple of miles, but is still in similar terrain.

There is no reason then why any major adjustments should have been required at any site.

Apologists for temperature tampering usually say it is all due to TOBS (Time of Observation). Yet the station at Ithaca, based at Cornell University, has used morning readings throughout. With a temperature difference of 2.9C, this is typical of the other sites, suggesting that any bias from TOBS is minor.

Either there is outright fraud going on here in the climate divisions at NOAA, or they are entirely blind to their own confirmation bias. Either way, this data once again illustrates why there is great distrust in their results. Global warming might be happening, and human activity might be causing it, but these strange adjustments in the data leave many in doubt.

1 128 129 130 131 132 274