Scientists think they have finally discovered what makes the Sun’s corona so hot
Using data from Europe’s Solar Orbiter spacecraft, scientists now think they have finally pinpointed the process that causes the Sun’s corona — its atmosphere — to be many times hotter than its surface.
For decades, scientists have been struggling to explain why temperatures in the sun’s outer atmosphere, the corona, reach mind-boggling temperatures of over 1.8 million degrees Fahrenheit (one million degrees Celsius). The sun’s surface has only about 10,000 degrees F (6,000 degrees C), and with the corona farther away from the source of the heat inside the star, the outer atmosphere should, in fact, be cooler.
New observations made by the Europe-led Solar Orbiter spacecraft have now provided hints to what might be behind this mysterious heating. Using images taken by the spacecraft’s Extreme Ultraviolet Imager (EUI), a camera that detects the high-energy extreme ultraviolet light emitted by the sun, scientists have discovered small-scale fast-moving magnetic waves that whirl on the sun’s surface. These fast-oscillating waves produce so much energy, according to latest calculations, that they could explain the coronal heating.
You can read the paper here [pdf]. The results have not yet been confirmed, but if so it will solve one of the space age’s oldest scientific mysteries.
Using data from Europe’s Solar Orbiter spacecraft, scientists now think they have finally pinpointed the process that causes the Sun’s corona — its atmosphere — to be many times hotter than its surface.
For decades, scientists have been struggling to explain why temperatures in the sun’s outer atmosphere, the corona, reach mind-boggling temperatures of over 1.8 million degrees Fahrenheit (one million degrees Celsius). The sun’s surface has only about 10,000 degrees F (6,000 degrees C), and with the corona farther away from the source of the heat inside the star, the outer atmosphere should, in fact, be cooler.
New observations made by the Europe-led Solar Orbiter spacecraft have now provided hints to what might be behind this mysterious heating. Using images taken by the spacecraft’s Extreme Ultraviolet Imager (EUI), a camera that detects the high-energy extreme ultraviolet light emitted by the sun, scientists have discovered small-scale fast-moving magnetic waves that whirl on the sun’s surface. These fast-oscillating waves produce so much energy, according to latest calculations, that they could explain the coronal heating.
You can read the paper here [pdf]. The results have not yet been confirmed, but if so it will solve one of the space age’s oldest scientific mysteries.