Curiosity sees evidence of solar storm hitting Mars

Charged particles from solar storm
Click to see original three-frame movie.

Cool image time! The picture to the right is a screen capture from a three-frame movie created from photos taken by one of the navigation cameras on the Mars rover Curiosity. The white streak and other smaller streaks were created by charged particles hitting the camera’s CCD detector on May 20, 2024, from a solar storm caused by the strong solar flares presently being pumped out by the Sun.

The mission regularly captures videos to try and catch dust devils, or dust-bearing whirlwinds. While none were spotted in this particular sequence of images, engineers did see streaks and specks – visual artifacts created when charged particles from the Sun hit the camera’s image detector. The particles do not damage the detector.

The images in this sequence appear grainy because navigation-camera images are processed to highlight changes in the landscape from frame to frame. When there isn’t much change — in this case, the rover was parked — more noise appears in the image.

Curiosity’s Radiation Assessment Detector (RAD) measured a sharp increase in radiation at this time – the biggest radiation surge the mission has seen since landing in 2012.

The view of this picture is to the south, looking towards the top of Mount Sharp, though that peak, more than 25 miles away, is not visible because the mountain’s lower flanks are in the way. A second movie showing similar charged particle streaks was taken looking south, with the rim of Gale Crater barely visible 20-30 miles away.

Powerful 1972 solar storm detonated ocean mines in Vietnam

Scientists studying a powerful 1972 storm have also uncovered a recently released Navy report that showed the storm was powerful enough that it detonated ocean mines off the coast of Vietnam.

On the same day [the storm arrived on Earth], while observing the coastal waters of North Vietnam from aircraft, US Navy personnel witnessed dozens of destructor sea mines exploding with no obvious cause. These mines were airdropped by the US Navy into Vietnamese waters as part of Operation Pocket Money, a mission aimed at blocking supplies from reaching North Vietnamese ports.

The Navy promptly investigated the peculiar explosions, working with the National Academy of Sciences and the National Oceanic and Atmospheric Administration, to conclude that more than 4,000 mine detonations were most likely triggered by the solar storm, Knipp said.

A now declassified report about the mining of North Vietnam from the Chief of Naval Operations at the Mine Warfare Project Office noted, “this was the first example of what happens to a major mining campaign in the face of the vagaries of nature.”

Many of the destructor mines were designed to trigger if they sensed changes in magnetic fields associated with moving ships. Solar activity is known to perturb Earth’s magnetic field, and in early August 1972, the perturbations were likely strong enough to meet the magnetic requirements for detonation, Knipp said.

This proves once again that one must not dismiss any possibility in trying to understand what happens in the universe. Don’t be credulous, but don’t be close-minded either. The universe can surprise you.

Big solar storm not so big

The uncertainty of science: A new analysis of the the 1859 giant solar storm, the first ever detected and dubbed the Carrington event after the scientist who discovered it, suggests that its strength was not global as previously believed, and that it only effected a few spots on Earth.

Up until now the Carrington event has been considered the strongest solar storm to ever hit the Earth, and has been used by the solar satellite industry as a wedge to demand funding for solar warning satellites, claiming that if a similar storm was to ever hit the Earth again without warning, it would destroy civilization as we know it. This new data suggests that this threat has been over-stated.

Why am I not surprised?

Using Solar Dynamics Observatory (SDO), scientists have finally identified the Sun’s predicted giant jet streams.

Using Solar Dynamics Observatory (SDO), scientists have finally identified the Sun’s predicted giant jet streams.

These large flows, bigger than any flow structures previously identified, might help explain the Sun’s rotation (which is faster at the equator than at the poles), its magnetic field, and its production of sunspots. Not surprisingly, however, the models and data do not match exactly:

Mark Miesch, a physicist at the National Center for Atmospheric Research in Boulder, Colorado, says the new study confirms modelling work he and others have done on giant convective cells4. There are, however, some differences between what the models suggest and what Hathaway’s team observed. For instance, the models indicate that giant cells should align themselves from north to south near the Sun’s equator, an arrangement that isn’t seen in the new data. In fact, points out solar physicist Junwei Zhao of Stanford University in California, most of the giant cells were seen at high latitudes, and they need to be spotted at lower latitudes as well. “Whether it will convince the community remains to be seen,” says Zhao.

The biggest solar storm to be aimed at the Earth in seven years is expected to reach us by Tuesday.

The biggest coronal mass ejection to be aimed at the Earth in seven years is expected to reach us by Tuesday.

No need to panic. Not only is the storm still relatively mild compared to past eruptions, the airline and electrical industries are actually well prepared for this event. However, if you want to see the aurora, this will probably be a good opportunity.