New Horizons confirms solar wind slows at greater solar distances
The New Horizons science team today released data that confirms that, as theorized, the speed of the solar wind decreases as it travels farther from the Sun.
As the solar wind moves farther from the Sun, it encounters an increasing amount of material from interstellar space. When interstellar material is ionized, the solar wind picks up the material and, researchers theorized, slows and heats in response. SWAP [an instrument on New Horizons] has now detected and confirmed this predicted effect.
The SWAP team compared the New Horizons solar wind speed measurements from 21 to 42 astronomical units to the speeds at 1 AU from both the Advanced Composition Explorer (ACE) and Solar TErrestrial RElations Observatory (STEREO) spacecraft. (One AU is equal to the distance between the Sun and Earth.) By 21 AU, it appeared that SWAP could be detecting the slowing of the solar wind in response to picking up interstellar material. However, when New Horizons traveled beyond Pluto, between 33 and 42 AU, the solar wind measured 6-7% slower than at the 1 AU distance, confirming the effect.
The data also suggests that New Horizons could exit the heliosphere and enter interstellar space as early as sometime in the 2020s.
The New Horizons science team today released data that confirms that, as theorized, the speed of the solar wind decreases as it travels farther from the Sun.
As the solar wind moves farther from the Sun, it encounters an increasing amount of material from interstellar space. When interstellar material is ionized, the solar wind picks up the material and, researchers theorized, slows and heats in response. SWAP [an instrument on New Horizons] has now detected and confirmed this predicted effect.
The SWAP team compared the New Horizons solar wind speed measurements from 21 to 42 astronomical units to the speeds at 1 AU from both the Advanced Composition Explorer (ACE) and Solar TErrestrial RElations Observatory (STEREO) spacecraft. (One AU is equal to the distance between the Sun and Earth.) By 21 AU, it appeared that SWAP could be detecting the slowing of the solar wind in response to picking up interstellar material. However, when New Horizons traveled beyond Pluto, between 33 and 42 AU, the solar wind measured 6-7% slower than at the 1 AU distance, confirming the effect.
The data also suggests that New Horizons could exit the heliosphere and enter interstellar space as early as sometime in the 2020s.