The uncertainty of science as proven by the Webb Space Telescope

A long detailed article was released today at Space.com, describing the many contradictions in the data coming back from the Webb Space Telescope that seriously challenge all the theories of cosmologists about the nature of the universe as well as its beginning in a single Big Bang.

The article is definitely worth reading, but be warned that it treats science as a certainty that should never have such contradictions, as illustrated first by its very headline: “After 2 years in space, the James Webb Space Telescope has broken cosmology. Can it be fixed?”

“Science” isn’t broken in the slightest. All Webb has done is provide new data that does not fit the theories. As physicist Richard Feynman once stated bluntly in teaching students the scientific method,

“It doesn’t make a difference how beautiful your guess is, it doesn’t make a difference how smart you are, who made the guess, or what his name is. If it disagrees with experiment, it’s wrong.”

Cosmologists for decades have been guessing in proposing their theories about the Big Bang, the expansion of the universe, and dark matter, based on only a tiny amount of data that had been obtained with enormous assumptions and uncertainties. It is therefore not surprising (nor was it ever surprising) that Webb has blown holes in their theories.

For example, the article spends a lot of time discussing the Hubble constant, describing how observations using different instruments (including Webb) have come up with two conflicting numbers for it — either 67 or 74 kilometers per second per megaparsec. No one can resolve this contradiction. No theory explains it.

To me the irony is that back in the 1990s, when Hubble made its first good measurements of the Hubble constant, these same scientists were certain then that the number Hubble came up with, around 90 kilometers per second per megaparsec, was now correct.

They didn’t really understand reality then, and they don’t yet understand it now.

What cosmologists must do is back away from their theories and recognize the vast areas of ignorance that exist. Once that is done, they might have a chance to resolve the conflict between the data obtained and the theories proposed, and come up with new theories that might work (with great emphasis on the word “might”). Complaining about the paradoxes will accomplish nothing.

Webb confirms galaxy as one of the earliest known in the universe

The uncertainty of science: Using the spectroscopic instrument on the Webb Space Telescope, scientists have confirmed that one of the first galaxies found by Webb, dubbed Maisie’s Galaxy after the daughter of one scientist, is one of the earliest known in the universe, existing only 390 million years after when cosmologies say the Big Bang happened.

The data also showed that another one of these early galaxies spotted by Webb did not exist 250 million years after the Big Bang, but one billion years after, a date that better fits the theories about the early universe, based on the nature of this galaxy.

It turns out that hot gas in CEERS-93316 was emitting so much light in a few narrow frequency bands associated with oxygen and hydrogen that it made the galaxy appear much bluer than it really was. That blue cast mimicked the signature Finkelstein and others expected to see in very early galaxies. This is due to a quirk of the photometric method that happens only for objects with redshifts of about 4.9. Finkelstein says this was a case of bad luck. “This was a kind of weird case,” Finkelstein said. “Of the many tens of high redshift candidates that have been observed spectroscopically, this is the only instance of the true redshift being much less than our initial guess.”

Not only does this galaxy appear unnaturally blue, it also is much brighter than our current models predict for galaxies that formed so early in the universe. “It would have been really challenging to explain how the universe could create such a massive galaxy so soon,” Finkelstein said. “So, I think this was probably always the most likely outcome, because it was so extreme, so bright, at such an apparent high redshift.”

This science team is presently using Webb’s spectroscope to study ten early galaxies in order to better determine their age. Expect more results momentarily.

Another Webb galaxy found even closer to the Big Bang

A galaxy formed only 250 million years after the universe formed

Using data from the first Webb deep field, astronomers have identified another galaxy in that image that apparently was able to form less than 250 million years after the the Big Bang, the theorized beginning of the universe.

Like the distant galaxies described last week, it also appears to have the equivalent of a billion Suns of material in the form of stars. The researchers estimate that it might have started star formation as early as 120 million years after the Big Bang, and had certainly done so by 220 million years.

You can read the actual research paper here [pdf]. The image of the galaxy to the right is taken from figure 4 of the paper. From its abstract:

We provide details of the 55 high-redshift galaxy candidates, 44 of which are new, that have enabled this new analysis. Our sample contains 6 galaxies at z≥12, one of which appears to set a new redshift record as an apparently robust galaxy candidate at z≃16.7.

The speed in which this galaxy formed places a great challenge on the Big Bang theory itself. 220 million years is an instant when it comes to galaxy formation, which has been assumed to take far longer. Either galaxy formation is a much faster process than expected, or something is seriously wrong with the timing of the Big Bang theory itself.