A baby star and its protoplanetary disk

A baby star and its protoplanetary disk
Click for originial.

Cool image time! The picture to the right, cropped, rotated, reduced, and sharpened to post here, is the Webb picture of the month from NASA and the European Space Agency (ESA), released today. It shows a baby star about 525 light years away.

IRAS 04302+2247, or IRAS 04302 for short, is a beautiful example of a protostar – a young star that is still gathering mass from its environment – surrounded by a protoplanetary disc in which baby planets might be forming. Webb is able to measure the disc at 65 billion km across – several times the diameter of our Solar System. From Webb’s vantage point, IRAS 04302’s disc is oriented edge-on, so we see it as a narrow, dark line of dusty gas that blocks the light from the budding protostar at its centre. This dusty gas is fuel for planet formation, providing an environment within which young planets can bulk up and pack on mass.

When seen face-on, protoplanetary discs can have a variety of structures like rings, gaps and spirals. These structures can be signs of baby planets that are burrowing through the dusty disc, or they can point to phenomena unrelated to planets, like gravitational instabilities or regions where dust grains are trapped. The edge-on view of IRAS 04302’s disc shows instead the vertical structure, including how thick the dusty disk is. Dust grains migrate to the midplane of the disc, settle there and form a thin, dense layer that is conducive to planet formation; the thickness of the disc is a measure of how efficient this process has been.

The dense streak of dusty gas that runs vertically across this image cocoons IRAS 04302, blotting out its bright light such that Webb can more easily image the delicate structures around it. As a result, we’re treated to the sight of two gauzy nebulas on either side of the disc. These are reflection nebulas, illuminated by light from the central protostar reflecting off of the nebular material.

As this is a baby star, the cones above and below the disk indicate the original spherical cloud, with the upper and lower halves now being pulled downward into a spinning disk, where the solar system is forming.

This image is not simply an infrared Webb image. The Hubble Space Telescope provided the optical view, which the Atacama Large Millimetre/submillimetre Array (ALMA) in Chile provided data in those wavelengths. Note also the many background galaxies. The universe is not only infinite, it is infinitely populated.

Using Webb astronomers have for the first time identified the source of a fast radio burst

Fast Radio Burst source

Astronomers using the Webb Space Telescope have now successfully pinpointed a specific object that appears to be the source for a fast radio burst (FRB), extra-galactic short bursts of radio energy whose cause and origin have up-to-now been unexplained.

Blanchard and his team used a discovery of an FRB in a nearby galaxy made with the CHIME Outriggers array, a radio telescope in Canada, which was recently upgraded to enable FRB detections with precise positions. The researchers then turned to NASA’s James Webb Space Telescope to look for an infrared signal from the same location.

…The infrared data revealed an object, dubbed NIR-1, that is likely a red giant star or possibly a middle-aged massive star. A red giant is a Sun-like star near the end of its life that has expanded and brightened, while the other possibility is a star much more massive than the Sun.

Although these stars are unlikely to directly produce FRBs, the scientists say, they may have an unseen companion, such as a neutron star, pulling material away from the red giant or massive star. This process of transferring mass

The burst itself occurred on March 16, 2025 about 130 million light-years away in the galaxy NGC 4141. You can read the discovery paper here [pdf].

There remain of course great uncertainties. For one, NIR-1 is itself not likely the cause of the FRB, but related to its source in some manner. The scientists posit a number of explanations, from either an unseen magnetar (a pulsar with a powerful magnetic field), or a flare from this massive star reflecting off that unseen magnetar.

Regardless, this discovery helps narrow the theories considerably.

Webb discovers another “oldest black hole”

The uncertainty of science: Using the Webb Space Telescope, astronomers now claim they have detected a super-massive black hole at a new record-setting distance that puts it far closer to the Big Bang that cosmologists have predicted.

A global team of astronomers, led by The University of Texas at Austin’s Cosmic Frontier Center, has confirmed the discovery of the most distant black hole ever observed. This black hole resides within a galaxy known as CAPERS-LRD-z9, which existed only 500 million years after the Big Bang.

In other words, the light we see from it has traveled 13.3 billion years, revealing the universe at just 3% of its current age.

The black hole, estimated to have the mass of 300 million suns, sits in the center of one of the mysterious “little red dots” that Webb has discovered in the early universe that remain a mystery. This black hole suggests each is an early galaxy with its own super-massive black holes.

I must note that there is great uncertainty in the claim of a black hole discovery. It is based on the spectroscopic emissions detected by Webb, which had features generally seen only in super-massive black holes in the recent universe. Thus, the scientists are making some large assumptions in concluding those emissions also indicate a super-massive black hole in this little red dot.

We must also note that if this black hole really exists, it confounds the theories of cosmologists as to the formation of the universe. It is too soon after the Big Bang for such a black hole to have formed, according to those theories.

Webb: Evidence of gas giant exoplanet orbiting the central star of Alpha Centuri

Webb infrared data
Click for original image.

The uncertainty of science: Astronomers using the Webb Space Telescope now think they have detected a gas giant exoplanet orbiting the central star of the Alpha Centuri triple star system, the closest star to our Sun at only four light years distance.

The false-color image to the right shows the candidate exoplanet labeled as S1, with the light of the central star blocked out but indicated by the star at the center. A lot of processing was required to bring out this bright blob, including eliminating optical effects that normally act to hide such objects.

Alpha Centauri, located in the far southern sky, is made up of the binary Alpha Centauri A and Alpha Centauri B, both Sun-like stars, and the faint red dwarf star Proxima Centauri. Alpha Centauri A is the third brightest star in the night sky. While there are three confirmed planets orbiting Proxima Centauri, the presence of other worlds surrounding Alpha Centauri A and Alpha Centauri B has proved challenging to confirm.

Now, Webb’s observations from its Mid-Infrared Instrument (MIRI) are providing the strongest evidence to date of a gas giant orbiting Alpha Centauri A. …Based on the brightness of the planet in the mid-infrared observations and the orbit simulations, researchers say it could be a gas giant approximately the mass of Saturn orbiting Alpha Centauri A in an elliptical path varying between 1 to 2 times the distance between Sun and Earth.

If confirmed the exoplanet would be orbiting the star within the habitable zone, though as a gas giant life as we know it would likely be impossible. The location, only four light years away, makes this exoplanet and the entire system a prime target for further observations.

Hat tip to BtB’s stringer Jay.

New data raises doubts about exoplanet having chemicals that on Earth come from life

The uncertainty of science: Using new data from the Webb Space Telescope, scientists now conclude that the identification on an exoplanet in April 2025 of the molecules dimethyl sulfide (DMS) and/or dimethyl disulfide (DMDS) — both of which on Earth are only associated with the presence of life — is now uncertain and that these molecules likely aren’t there.

The new work uses [Webb] data to better qualify what is going on. The work confirms the presence of an ocean on this peculiar exoplanet, although it can’t confirm if there is a thick or thin atmosphere. They couldn’t find water vapor in the atmosphere, suggesting that there is an efficient cold trap, keeping evaporation to a minimum on this temperate sub-Neptune world.

Those potential biosignatures were all below the threshold for an undeniable detection, and their model suggests that a possible presence of DMS could be explained by sources unrelated to life. They advise considering more and different molecules to use as biosignatures. Astronomers are studying worlds that are very different from our own, and the chemical signatures that seem obvious here on Earth might not fit well with those exoplanets.

In other words, they simply don’t have enough data to know, one way or the other. No surprise, The science of studying exoplanets is in its infancy, and right now can only tease out the smallest of details based on our limited technology and the distances involved.

You can read the new paper here [pdf]. It notes further that using these molecules as a sign of life is also a mistake, as they can be created in other ways having nothing to do with biology.

A Webb false color image of a planetary nebula

A Webb false color image of a planetary nebula
Click for original image.

Cool image time! The picture to the right, reduced and sharpened to post here, was released today by the science team of the Webb Space Telescope, showing the planetary nebula NGC 6072 in infrared false color.

This particular image was one of two taken by Webb, and looked at the nebula in the near infrared.

[I]t’s readily apparent that this nebula is multi-polar. This means there are several different elliptical outflows jetting out either way from the center, one from 11 o’clock to 5 o’clock, another from 1 o’clock to 7 o’clock, and possibly a third from 12 o’clock to 6 o’clock. The outflows may compress material as they go, resulting in a disk seen perpendicular to it. Astronomers say this is evidence that there are likely at least two stars at the center of this scene. Specifically, a companion star is interacting with an aging star that had already begun to shed some of its outer layers of gas and dust.

The central region of the planetary nebula glows from the hot stellar core, seen as a light blue hue in near-infrared light. The dark orange material, which is made up of gas and dust, follows pockets or open areas that appear dark blue. This clumpiness could be created when dense molecular clouds formed while being shielded from hot radiation from the central star. There could also be a time element at play. Over thousands of years, inner fast winds could be ploughing through the halo cast off from the main star when it first started to lose mass.

The second image, taken in the mid-infrared, shows expanding dust shells, with some forming an encircling ring around the central nebula.

It is believed that the two stars at the center of this nebula act to churn the expanding material to form this complex shape. Imagine them functioning almost like the blades in a blender.

Third star destroying part of expanding shells surrounding binary Wolf-Rayet stars

Apep system.
From figure 3 of the paper.

Using the Webb Space Telescope, astronomers think they can now disentangle the strange spiral shape of the expanding dust shells caused by the colliding powerful winds flowing from a binary pair of giant aging Wolf-Rayet stars, dubbed the Apep system.

Apparently, a third smaller O-type star sits in the system, and is acting to block the winds and destroy the dust within them, carving out a large cavity in the spiral shells. The image to the right, produced by the Very Large Telescope in Chile, shows the spiral dust shells shaped by the strong solar winds flowing and colliding from the binary Wolf-Rayet stars (the bright dot in the center). The O-type star can be seen just above them. The yellow lines indicate the empty cone. Without the O star computer models had predicted a very bright shell north of the binary, and its non-existence in VLT images caused these further Webb observations.

From the paper’s [pdf] conclusion:

The JWST observations of Apep reveal luminous circumstellar dust that support[s] … our finding that the O supergiant ‘northern companion’ is dynamically associated with the binary WR stars in Apep; this is the first time that dust destruction has been observed by a tertiary star in a colliding wind nebula, and marks Apep as part of a rare class of triple colliding wind binaries.

The dust produced by Wolf-Rayet stars is thought to be a major component in seeding the formation of later stars, such as our own Sun. Finding that a third star in the system can destroy that dust suggests (as always) that this process can be far more complicated that first believed.

Hat tip to BtB’s stringer Jay.

Webb spots aftermath of collision of two galaxies

colliding galaxies
Click for source.

Using the Webb Space Telescope, astronomers have discovered the collision of two spiral galaxies that appears to have caused a supermassive black hole to collapse in its wake.

The Webb false-color infrared image to the right shows the two galaxies as the red dots, both surrounded by a ring, with the supermassive black hole the bluish spot in between but offset somewhat to the left. Follow-up radio observations suggested that this bluish spot was a supermassive black hole, having a mass of a million suns and sucking up matter from the giant gas cloud that surrounds it.

The team proposes that the black hole formed there via the direct collapse of a gas cloud – a process that may explain some of the incredibly massive black holes Webb has found in the early universe.

This hypothesis however has enormous uncertainties, and requires a lot more observations to confirm. The black hole could simply exist unrelated to the galaxy collision, having come there from elsewhere. Or it could be from a third galaxy in this group that these initial observations have not yet detected.

The image however is quite cool.

Webb detects unexpected “little red dots” in the early universe

The uncertainty of science: Using the Webb Space Telescope astronomers have begun to compile a small catalog of what they call “little red dots” [LRDs], objects in the very early universe that are very small, too small to be galaxies and are thus a mystery.

A team of astronomers recently compiled one of the largest samples of LRDs to date, nearly all of which existed during the first 1.5 billion years after the big bang. They found that a large fraction of the LRDs in their sample showed signs of containing growing supermassive black holes.

“We’re confounded by this new population of objects that Webb has found. We don’t see analogs of them at lower redshifts, which is why we haven’t seen them prior to Webb,” said Dale Kocevski of Colby College in Waterville, Maine, and lead author of the study. “There’s a substantial amount of work being done to try to determine the nature of these little red dots and whether their light is dominated by accreting black holes.”

The present most popular theory to explain the dots, based on the available data, is that the dots are newly formed black holes, their red light caused by material falling into the hole at millions of miles per hour. That theory has of course problems. For example, it doesn’t explain why we don’t see these dots in more recent times. Nor does it explain why the dots are dim in X-rays, a radiation expected from accreting black holes.

As always, the press release claims that this discovery does not “break” the present cosmological theories for the formation of the universe, but at the same time, it does illustrate our overall lack of knowledge about that early universe. We really don’t know very much, which means any theories we have are likely wrong simply due to our present ignorance.

Webb takes infrared image of exoplanet

Webb's image of exoplanet

Using the Webb Space Telescope astronomers have now successfully taken an infrared false-color image of Saturn-sized exoplanet orbiting a young star about half the mass of the Sun and about 111 light years away.

The image is to the right, cropped and reduced to post here. The star, its light blocked out, is indicated by the circle with the star in the middle. The exoplanet is the orange blob to the upper right, sitting inside the blue accretion disk that surrounds the star, photographed in optical light by the Very Large Telescope in Chile.

You can read the paper here. The scientists rejected the possibility that this was a background galaxy after doing computer modeling, based on the data available. From their paper:

Dedicated N-body simulations were conducted for a planet with a mass of 0.34 [mass of Jupiter], located at 52 au [astronomical units] around the 0.46 [solar mass] central star. This value is consistent with the measured projected separation, assuming that the planet and the ≈13°-inclined disk are coplanar. The simulation also included a disk of 200,000 planetesimals, distributed between 20 and 130 au. These parameters were selected to roughly match the boundaries of the observed disk.

Note too that the picture to the right has been significantly enhanced by the press department at JPL, based on the actual data shown in the paper itself. These fact underline the uncertainties involved in this discovery.

Nonetheless, it is a good result, and suggests we are looking at the formation process of a new solar system surrounding a very young baby star.

Scientists increase the odds asteroid 2024 YR4 will impact the Moon in 2032

Asteroid 2024 YR4 in 2032
Click for original image.

Using additional data obtained by the Webb Space Telescope, scientists have now refined the orbit of potentially dangerous asteroid 2024 YR4 and confirmed that while it will almost certainly not hit the Earth in 2032, the odds of it impacting the Moon have increased.

With the additional data, experts from NASA’s Center for Near-Earth Object Studies at the agency’s Jet Propulsion Laboratory in Southern California further refined the asteroid’s orbit. The Webb data improved our knowledge of where the asteroid will be on Dec. 22, 2032, by nearly 20%. As a result, the asteroid’s probability of impacting the Moon has slightly increased from 3.8% to 4.3%. In the small chance that the asteroid were to impact, it would not alter the Moon’s orbit.

The yellow line in the image to the right shows the present range of positions the asteroid could be in as it passes the Moon on that date. It is expected this range will be narrowed further when the asteroid flies past the Earth harmlessly in 2028.

If the asteroid should hit the Moon, the impact will provide scientists a great opportunity to learn more about asteroids and the Moon. If it should miss, it will then be essential to recalculate its orbit to see what will happen on later near approaches, whether the fly-by increased or decreased the chances of a later Earth impact.

Webb spots a new record-setting galaxy, only 280 million years after the Big Bang

MoM Z14
The galaxy MoM z14, as seen in the infrared
by Webb. Click for original image.

The uncertainty of science: Using the Webb Space Telescope, astronomers have now identified a galaxy that formed only 280 million years after the Big Bang, far earlier than their theories of the origins of the universe had predicted.

“The broader story here is that JWST was not expected to find any galaxies this early in the history of the universe, at least not at this stage of the mission,” van Dokkum said. “There are, very roughly, over 100 more relatively bright galaxies in the very early universe than were expected based on pre-JWST observations.”

The data suggests MoM z14 is 50 times smaller than the Milky Way, contains nitrogen and carbon, and appears to be forming stars. The data also found little neutral hydrogen surrounding the galaxy, which also contradicts those same cosmological theories. According to those theories, the early universe should be filled with neutral hydrogen.

The nitrogen and oxygen are also there earlier than expected, and suggest there will be more such galaxies, including some even closer to the Big Bang.

Hat tip BtB’s stringer Jay.

New data suggests Europa’s surface is constantly changing

Webb data showing variations on Europa's surface
Click for original graphic.

The uncertainty of science: Using data collected by the Webb Space Telescope combined with modeling and lab experiments, scientists now think they have found evidence that Europa’s surface is constantly changing, with materials from its interior being brought to the surface.

This new study found crystalline ice on the surface as well as at depth in some areas on Europa, especially an area known as Tara Regio. “We think that the surface is fairly porous and warm enough in some areas to allow the ice to recrystallize rapidly,” said Dr. Richard Cartwright, lead author of the paper and a spectroscopist at Johns Hopkins University’s Applied Physics Laboratory. “Also, in this same region, generally referred to as a chaos region, we see a lot of other unusual things, including the best evidence for sodium chloride, like table salt, probably originating from its interior ocean. We also see some of the strongest evidence for CO2 and hydrogen peroxide on Europa.”

…“Our data showed strong indications that what we are seeing must be sourced from the interior, perhaps from a subsurface ocean nearly 20 miles (30 kilometers) beneath Europa’s thick icy shell,” said [Dr. Ujjwal Raut of the Southwest Research Institute and co-author of the paper]. “This region of fractured surface materials could point to geologic processes pushing subsurface materials up from below. When we see evidence of CO2 at the surface, we think it must have come from an ocean below the surface.”

The graphic to the right shows the detected variations across the surface of Europa, based on the Webb spectroscopic data. It also illustrates nicely the coarseness of this data, its lack of resolution, and the uncertainties involved. The scientists have found evidence that suggests the surface is changing, but the key word here is “suggests”. They have not yet directly seen any actual changes, such as changes between two images taken at different times.

Nonetheless, the data does point in the right direction. Moreover, it would be far more unlikely if nothing on Europa changed. The fundamental question that remains unanswered is how fast things change there. And we won’t have any chance to answer this question until Europa Clipper enters Jupiter orbit in 2030 and begins multiply fly-bys of Europa.

Astronomers observe cloud changes above the northern polar lakes of Titan

Changes seen in Titan's atmosphere
Click for full resolution image.

Using data from both ground- and space-based telescopes, astronomers have now observed clouds rising in the thick atmosphere of the Saturn moon Titan.

The team observed Titan in November 2022 and July 2023 using both Keck Observatory and the James Webb Space Telescope. Those observations not only showed clouds in the mid and high northern latitudes on Titan — the hemisphere where it is currently summer — but also showed those clouds apparently rising to higher altitudes over time. While previous studies have observed cloud convection at southern latitudes, this is the first time evidence for such convection has been seen in the north. This is significant because most of Titan’s lakes and seas are located in its northern hemisphere and evaporation from lakes is a major potential methane source. Their total area is similar to that of the Great Lakes in North America.

The image to the right shows these methane clouds, indicated by the arrows, as seen by Webb on July 11, 2023 and then three days later by Keck. The clouds appear to have shifted downward during these observations.

The data suggests we are seeing one small aspect of Titan’s atmospheric methane cycle, where the liquid methane in the lakes evaporates to form clouds, which later than condense to rain back down. Though superficially similar to the water cycle here on Earth, the details suggest it will be very different on Titan.

Astronomers detect chemicals on exoplanet that on Earth come from life

The uncertainty of science: Using the Webb Space Telescope, astronomers have detected two different molecules that on Earth are only linked with biology in the atmosphere of an exoplanet orbiting a red dwarf star within its habitable zone.

Earlier observations of K2-18b — which is 8.6 times as massive and 2.6 times as large as Earth, and lies 124 light years away in the constellation of Leo — identified methane and carbon dioxide in its atmosphere. This was the first time that carbon-based molecules were discovered in the atmosphere of an exoplanet in the habitable zone. Those results were consistent with predictions for a ‘Hycean’ planet: a habitable ocean-covered world underneath a hydrogen-rich atmosphere.

However, another, weaker signal hinted at the possibility of something else happening on K2-18b. “We didn’t know for sure whether the signal we saw last time was due to DMS, but just the hint of it was exciting enough for us to have another look with JWST using a different instrument,” said Professor Nikku Madhusudhan from Cambridge’s Institute of Astronomy, who led the research.

…The earlier, tentative, inference of DMS was made using JWST’s NIRISS (Near-Infrared Imager and Slitless Spectrograph) and NIRSpec (Near-Infrared Spectrograph) instruments, which together cover the near-infrared (0.8-5 micron) range of wavelengths. The new, independent observation [of dimethyl sulfide (DMS) and/or dimethyl disulfide (DMDS] used JWST’s MIRI (Mid-Infrared Instrument) in the mid-infrared (6-12 micron) range.

This data is not yet proof of biology. For example, the concentrations of these molecules in K2-18b’s atmosphere is thousands of times greater than on Earth. It is just as likely that numerous as yet unknown non-biological chemical processes in this alien environment have produced these chemicals. The scientists however are encouraged because the theories about ocean life on this kind of habitable ocean-covered superearth had predicted this high concentration of these chemicals.

At the same time, they readily admit there are many uncertainties in their data. They have asked for another 16 to 24 hours of observation time on Webb — a very large chunk rarely given out to one research group — to reduce these uncertainties.

You can read the peer-reviewed paper here [pdf].

The structure of a ringed planetary nebula revealed in the infrared

A planetary nebula as seen by Webb
Click for original image.

Cool image time! Using the mid-infrared camera on the Webb Space Telescope, astronomers have been able to image in false colors the ringed structure surrounding a dying star about 1,500 light years away.

The nebula’s two rings are unevenly illuminated in Webb’s observations, appearing more diffuse at bottom left and top right. They also look fuzzy, or textured. “We think the rings are primarily made up of very small dust grains,” Ressler said. “When those grains are hit by ultraviolet light from the white dwarf star, they heat up ever so slightly, which we think makes them just warm enough to be detected by Webb in mid-infrared light.”

In addition to dust, the telescope also revealed oxygen in its clumpy pink center, particularly at the edges of the bubbles or holes.

NGC 1514 is also notable for what is absent. Carbon and more complex versions of it, smoke-like material known as polycyclic aromatic hydrocarbons, are common in planetary nebulae (expanding shells of glowing gas expelled by stars late in their lives). Neither were detected in NGC 1514. More complex molecules might not have had time to form due to the orbit of the two central stars, which mixed up the ejected material.

Though this false-color image of a planetary nebular is hardly ground-breaking (Hubble has been producing such pictures for decades), Webb’s better infrared data, in higher resolution, will help astronomers untangle the nebula’s complex geography. It remains however a question whether the improved capabilities of Webb were worth its $10 billion-plus cost. For that money NASA could have built and launched many different astronomical missions in the past two decades, many of which would have been able to match this data for far less.

Webb infrared data increases odds asteroid 2024 YR4 will impact Moon in 2032

Asteroid 2024 YR4 as seen by Webb in the mid-infrared
Asteroid 2024 YR4 as seen by Webb in the
mid-infrared. Click for original image.

Using new infrared images and data from the Webb Space Telescope, astronomers have further refined the orbit and size of the potentially dangerous asteroid 2024 YR4.

The image of 2024 YR4 to the right was taken by Webb’s mid-infrared camera, and provides information on its thermal surface characteristics.

First, the Webb data narrowed the uncertainty about the asteroid’s size, suggesting it is about 200 feet in diameter. You can read the paper outlining this result here. The data also suggested nature of the asteroid’s surface, which is important in determining its future path. The pressure from sunlight can change the orbits of small asteroids, but figuring out how much is extremely difficult without knowing the rotation of the asteroid and the reflective qualities of its entire surface.

Second, based on this new data, other astronomers are increasingly certain 2024 YR4 will not hit the Earth in 2032, but the odds of it impacting the Moon have now increased to 4%.

Webb finds more elements not possible so soon after the Big Bang

A galaxy that shouldn't be there
Click for original image.

The uncertainty of science: Using the Webb Space Telescope, astronomers have now detected emissions of hydrogen from a galaxy that exists only 330 million years after the Big Bang that simply shouldn’t be possible, based on present cosmological theory.

The false-color infrared image of that galaxy is to the right, cropped to post here. At that distance, 13.5 billion light years away, all Webb can really see is this blurry spot. From the press release:

In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

In more blunt terms, the theory that the haze would clear only one billion years after the Big Bang appears very wrong. This result is also similar to the story earlier this week about the detection of oxygen in a similarly early galaxy, oxygen that could not possibly be there only a few hundred million years after the Big Bang. Not enough time had passed for the number of star generations needed to produce it.

You can read the peer-reviewed paper here. While the Big Bang theory is hardly dead, the data from Webb continues to suggest it either needs a major rethinking, or there is something fundamentally wrong with it.

Webb images in the infrared the aurora of Neptune

The aurora of Neptune
Click for original image.

Astronomers using the Webb Space Telescope have captured the first infrared images of the aurora of Neptune, confirming that the gas giant produces this phenomenon.

The picture to the right combines infrared data from Webb and optical imagery from the Hubble Space Telescope. The white splotches near the bottom of the globe are clouds seen by Hubble. The additional white areas in the center and near the top are clouds detected by Webb, while the greenish regions to the right are aurora activity detected by Webb.

The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.

This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989, which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.

The data also found that the temperature of Neptune’s upper atmosphere has cooled significantly since it was first measured by Voyager 2 in 1989, dropping by several hundred degrees.

New Webb infrared image reveals galaxy hidden behind outflow from baby star

Webb infrared image of baby star outflow
Click for original image.

Cool image time! The false-color infrared image to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope of the outflow from a baby star, dubbed Herbig-Haro 49/50, located about 625 light years away.

The picture was taken to get a better understanding of the flow itself. Earlier infrared images at much lower resolution by the Spitzer Space Telescope had left many features in this outflow unclear. For example, at the head of the outflow the Spitzer infrared image was unable to clearly identify the background spiral galaxy located there. In those earlier images it could have instead been a part of the outflow itself.

The galaxy that appears by happenstance at the tip of HH 49/50 is a much more distant, face-on spiral galaxy. It has a prominent central bulge represented in blue that shows the location of older stars. The bulge also shows hints of “side lobes” suggesting that this could be a barred-spiral galaxy. Reddish clumps within the spiral arms show the locations of warm dust and groups of forming stars. The galaxy even displays evacuated bubbles in these dusty regions

The actual source from which this flow comes remains unconfirmed, though astronomers think the source is one particular protostar about 1.5 light years away.

Webb captures infrared images of five exoplanets orbiting two different stars

Four gas giants in infrared
Click for original image.

Using the Webb Space Telescope, astronomers have taken two different direct false-color infrared images of exoplanets orbiting the stars HR 8799 (130 light years away) and 51 Eridani (97 light years away.

The image of the four gas giants orbiting HR 8799 is to the right, cropped, reduced, and slightly enhanced to post here. From the caption:

The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light.

The Webb false color infrared picture taken of one of the exoplanets orbiting the star 51 Eridani is also at the link, showing “a cool, young exoplanet that orbits 890 million miles from its star, similar to Saturn’s orbit in our solar system.”

The data from the HR 8799 image suggests these gas giants have a lot of carbon dioxide gas, and thus might be growing by pulling in material from the star’s accretion disk.

Webb captures infrared view of a baby binary star system and its bi-polar jets

A baby binary in formation
Click for original image.

Cool image time! The infrared false-color picture to the right, reduced and sharpened to post here, was released today by the science team of the Webb Space Telescope. It shows the bi-polar jets spewing out from a newly formed binary of two very young stars as their interact during their formation process.

The two protostars responsible for this scene are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.

It’s equally important to notice where the stars’ light is blocked — look for the exceptionally dark, wide V-shapes offset by 90 degrees from the orange cones. These areas may look like there is no material, but it’s actually where the surrounding dust is the densest, and little starlight penetrates it. If you look carefully at these areas, Webb’s sensitive NIRCam (Near-Infrared Camera) has picked up distant stars as muted orange pinpoints behind this dust. Where the view is free of obscuring dust, stars shine brightly in white and blue.

To put it more simply, the accretion disk for the binary system lies at right angles to the much larger jets. The rotation of that disk as well as the stars causes those jets to flow up and down from the poles, with the existence of two stars producing the complex patterns in those jets.

As this image was focused mostly on studying the upper jet, it does not show the entire lower jet, which extends beyond the lower border.

New data from Webb shows the Milky Way’s central supermassive black hole flares multiple times per day

The magnetic field lines surrounding Sagittarius A*
The magnetic field lines surrounding Sagittarius A*,
published in March 2024. Click for original image.

Though past research had shown that the Milky Way’s central supermassive black hole, dubbed Sagittarius A* (pronounced A-star) is generally quiet and inactive, new data from the Webb Space Telescope gathered over a year’s time now shows that it flares multiple times per day.

Throughout the year, the team saw how the black hole’s accretion disk emitted 5 to 6 large flares per day, of varying lengths and brightnesses, plus smaller flares in between. “[Sagittarius A*] is always bubbling with activity and never seems to reach a steady state,” Yusef-Zadeh says. “We observed the black hole multiple times throughout 2023 and 2024, and we noticed changes in every observation. We saw something different each time, which is really remarkable. Nothing ever stayed the same.”

In their paper published in The Astrophysical Journal Letters, the team outlines two possible ideas for the processes driving these flares. The faint flickers may be caused by turbulent fluctuations in the accretion disk, which could compress plasma and trigger a burst of radiation. “It’s similar to how the sun’s magnetic field gathers together, compresses and then erupts a solar flare,” Yusef-Zadeh says. “Of course, the processes are more dramatic because the environment around a black hole is much more energetic and much more extreme.”

The larger and brighter flares, on the other hand, may be caused by two fast-moving magnetic fields colliding and releasing accelerated particles. These magnetic reconnection events also have a solar parallel.

You can read their paper here [pdf]. Though this research shows unexpected activity, that activity is still relatively mild compared to other central supermassive black holes in many other galaxies. Why this difference exists remains an unanswered question.

Reanalysis of Webb data discovers more than a hundred very small main-belt asteroids

Portrait of all 138 new asteroids
Click for original image.

Using data from the Webb Space Telescope in an unexpected way, astronomers have discovered 138 asteroids in the main asteroid belt, most of which are the smallest so far detected.

The picture to the right shows all 138 asteroids. The researchers had originally used Webb to study the atmospheres of the exoplanets that orbit the star TRAPPIST-1. They then thought, why not see if their data also showed the existence of asteroids in our own solar system. By blinking between multiple images they might spot the movement of solar system objects moving across the field of view. From the press release:

The team applied this approach to more than 10 000 [Webb] images of the TRAPPIST-1 field, which were originally obtained to search for signs of atmospheres around the system’s inner planets. By chance TRAPPIST-1 is located right on the ecliptic, the plane of the solar system where all planets and most asteroids lie and orbit around the Sun. After processing the images, the researchers were able to spot eight known asteroids in the main belt. They then looked further and discovered 138 new asteroids, all within tens of meters in diameter — the smallest main belt asteroids detected to date. They suspect a few asteroids are on their way to becoming near-Earth objects, while one is likely a Trojan — an asteroid that trails Jupiter.

The data is insufficient for most of these objects to chart their orbits precisely. Based on this one single study, however, it suggests that pointing Webb along the ecliptic in almost any direction will detect more such objects. Do this enough and astronomers might actually be able to get a rough census of the asteroid belt’s population.

Hubble vs Webb, or why the universe’s secrets can only be uncovered by looking at things in many wavelengths

Hubble view of Sombrero galaxy
Click for original image.

Time for two cool images of the same galaxy! The picture above shows the Sombrero Galaxy as taken by the Hubble Space Telescope in 2003. The picture below is that same galaxy as seen by the Webb Space Telescope in the mid-infrared using false colors. From the press release:

In Webb’s mid-infrared view of the Sombrero galaxy, also known as Messier 104 (M104), the signature, glowing core seen in visible-light images does not shine, and instead a smooth inner disk is revealed. The sharp resolution of Webb’s MIRI (Mid-Infrared Instrument) also brings into focus details of the galaxy’s outer ring, providing insights into how the dust, an essential building block for astronomical objects in the universe, is distributed. The galaxy’s outer ring, which appeared smooth like a blanket in imaging from NASA’s retired Spitzer Space Telescope, shows intricate clumps in the infrared for the first time.

Researchers say the clumpy nature of the dust, where MIRI detects carbon-containing molecules called polycyclic aromatic hydrocarbons, can indicate the presence of young star-forming regions. However, unlike some galaxies studied with Webb … the Sombrero galaxy is not a particular hotbed of star formation. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. Even the supermassive black hole, also known as an active galactic nucleus, at the center of the Sombrero galaxy is rather docile, even at a hefty 9-billion-solar masses. It’s classified as a low luminosity active galactic nucleus, slowly snacking on infalling material from the galaxy, while sending off a bright, relatively small, jet.

In infrared the galaxy’s middle bulge of stars practically vanishes, exposing the weak star-forming regions along galaxy’s disk.

Both images illustrate the challenge the universe presents us in understanding it. Basic facts are often and in fact almost always not evident to the naked eye. We always need to look deeper, in ways that at first do not seem obvious. This is why it is always dangerous to theorize with certainty any explanation too soon, as later data will always change that explanation. You can come up with an hypothesis, but you should always add the caveat that you really don’t know.

By the way, this concept applies not just to science. Having absolute certainty in anything will almost always cause you to look like a fool later. Better to always question yourself, because that will make it easier for you to find a better answer, sooner.

We need only look at the idiotic “mainstream press” during the months leading up to the November election to have an example of someone with certainty who is now exposed as an obvious fool.

The Sombrero Galaxy as seen by Webb
Click for original image.

Scientists use Hubble and Webb to confirm there are as yet no planets forming in Vega’s accretion disk

Hubble and Webb images of Vega's accretion disk
Click for original image.

Using both the Hubble and Webb space telescopes, scientists have now confirmed, to their surprise, that the accretioni disk that surrounds the nearby star Vega is very smooth with almost no gaps, and thus apparently has not new exoplanets forming within it.

The two pictures to the right, cropped and reduced to post here, come from two different papers. The Hubble paper is here [pdf] while the Webb paper is here [pdf]. From the press release:

Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.

The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”

The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.

At the moment astronomers consider the very smooth accretion disk surrounding Vega to be rare and exception to the rule, with most debris disks having gaps that suggest the presence of newly formed exoplanets within them. That Vega breaks the rule however suggests the rule might not be right in the first place.

Post-collision images of two galaxies

Post-collision imagery by Hubble and Webb
Click for original image.

Using both the Hubble and Webb space telescopes, astronomers have now produced multi-wavelength images of the galaxies NGC 2207and IC 2163, as shown to the right.

Millions of years ago the smaller galaxy, IC 2163, grazed against the larger, NGC 2207, resulting today in increased star formation in both galaxies, indicated by blue in the Hubble photo. From the caption of the combined images:

Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form.

The two images to the left leaves the Hubble and Webb separate, making it easier to see the different features the different wavelengths reveal. From this caption:

In Hubble’s image, the star-filled spiral arms glow brightly in blue, and the galaxies’ cores in orange. Both galaxies are covered in dark brown dust lanes, which obscure the view of IC 2163’s core at left. In Webb’s image, cold dust takes centre stage, casting the galaxies’ arms in white. Areas where stars are still deeply embedded in the dust appear pink. Other pink dots may be objects that lie well behind these galaxies, including active supermassive black holes known as quasars.

The largest and brightest pink area in the Webb image, on the bottom right and a blue patch in the Hubble image, is where a strong cluster of star formation is presently occurring.

Scientists detect jets of carbon dioxide and carbon monoxide from asteroid

Jets from asteroid
Click for original graphic.

Using the spectroscopy from the Webb Space Telescope, scientists have now detected jets of carbon dioxide and carbon monoxide spewing from the very active asteroid 29P/Schwassmann-Wachmann-1 (29P).

Based on the data gathered by Webb, the team created a 3D model of the jets to understand their orientation and origin. They found through their modeling efforts that the jets were emitted from different regions on the centaur’s nucleus, even though the nucleus itself cannot be resolved by Webb. The jets’ angles suggest the possibility that the nucleus may be an aggregate of distinct objects with different compositions; however, other scenarios can’t yet be excluded.

The graphic to the right illustrates the modeling of these jets. That the center of this two-lobed asteroid could have been created from distinct objects suggests a very complex formation process, since those objects would have had to have formed themselves in different locations in the solar system and then somehow come together.

Carbon dioxide and hydrogen peroxide found on the surface of Pluto’s moon Charon

Using spectroscopic data from the Webb Space Telescope, scientists have detected both carbon dioxide and hydrogen peroxide on the surface of Pluto’s moon Charon, adding these chemicals to the previously detected water ice and ammonia-bearing chemicals that give the planet its gray and red colors.

The team compared the spectroscopic observations with laboratory measurements and detailed spectral models of the surface, concluding that carbon dioxide is present primarily as a surface veneer on a water ice-rich subsurface. “Our preferred interpretation is that the upper layer of carbon dioxide originates from the interior and has been exposed to the surface through cratering events. Carbon dioxide is known to be present in regions of the protoplanetary disk from which the Pluto system formed,” Protopapa said.

The presence of hydrogen peroxide on the surface of Charon clearly indicates that the water ice-rich surface is altered by solar ultraviolet light and energetic particles from the solar wind and galactic cosmic rays. Hydrogen peroxide forms from oxygen and hydrogen atoms originating from the breakup of water ice due to incoming ions, electrons or photons.

The theory proposing the dry ice comes from the interior is interesting, but there simply is not enough data to take it very seriously at this point.

Webb takes an infrared look at a galaxy looked at by Hubble

Comparing Hubble with Webb
For original images go here and here.

Cool image time! The bottom picture on the right, cropped to post here, is a just released false color infrared image of the galaxy Arp 107, taken by the Webb Space Telescope. The picture at the top is a previously released optical image taken by the Hubble Space Telescope and featured as a cool image back in September 2023. The Hubble image was taken as part of a survey project to photograph the entire Arp catalog of 338 “peculiar galaxies,” put together by astronomer Halton Arp in 1966. In this case Arp 107 is peculiar because it is actually two galaxies in the process of merging. It is also peculiar because the galaxy on the left has an active galactic nuclei (AGN), where a supermassive black hole is sucking up material and thus emitting a lot of energy.

The Webb infrared image was taken to supplement that optical image. The blue spiral arms indicate dust and star-forming regions. The bright orange object in the center of the galaxy is that AGN, clearly defined by Webb’s infrared camera.

When I posted the Hubble image in 2023, I noted that “if you ignore the blue whorls of the left galaxy, the two bright cores of these merging galaxies are about the same size.” In the Webb image the two cores still appear about the same size, but in the infrared they produce emissions in decidedly different wavelengths, as shown by the different false colors of orange and blue. The core of the galaxy on the right is dust filled and forming stars, while the core of the left galaxy appears to have less dust with all of its emissions resulting from the energy produced by the material being pulled into the supermassive black hole.

The universe is very active and changing, but to understand that process we humans have to look at everything across the entire electromagnetic spectrum, not just in the optical wavelengths our eyes see.

1 2 3 6