Maven makes first map of Mars’ high altitude winds
Scientists using the Martian orbiter Maven have produced the first global map of the high altitude wind circulation of Mars.
The measurements of winds that were recently mapped above Mars were found at an altitude range of about 140-240 kilometers (85-150 miles) above the planet’s surface.
The wind data has been gathered by the Neutral Gas and Ion Mass Spectrometer (NGIMS). NGIMS’ original purpose was to determine the structure and composition of the Martian atmosphere by measuring in it the amounts of ions (electrically charged particles) and gases. However, although it was not originally designed to do so, in April 2016, the MAVEN team began using NGIMS to observe horizontal winds. Pausing normal collection of data, scientists on Earth programmed the instrument to nod back and forth so that it could detect the direction of winds along its track.
By combining data from many tracks as MAVEN orbits Mars, scientists slowly built up a map of wind behavior. This led to a startling discovery: the wind patterns actually correlated with the Martian topography below.
They have found that even at this high altitude the winds shift around the high volcanoes of the Tharsis Bulge.
To my eye, the wind pattern seen in the image, taken from the video at the link, is remarkably similar to the global wind patterns found on Venus, forming a widening V-pattern moving from east to west. Though the two are vastly different, the similarity is quite intriguing.
Scientists using the Martian orbiter Maven have produced the first global map of the high altitude wind circulation of Mars.
The measurements of winds that were recently mapped above Mars were found at an altitude range of about 140-240 kilometers (85-150 miles) above the planet’s surface.
The wind data has been gathered by the Neutral Gas and Ion Mass Spectrometer (NGIMS). NGIMS’ original purpose was to determine the structure and composition of the Martian atmosphere by measuring in it the amounts of ions (electrically charged particles) and gases. However, although it was not originally designed to do so, in April 2016, the MAVEN team began using NGIMS to observe horizontal winds. Pausing normal collection of data, scientists on Earth programmed the instrument to nod back and forth so that it could detect the direction of winds along its track.
By combining data from many tracks as MAVEN orbits Mars, scientists slowly built up a map of wind behavior. This led to a startling discovery: the wind patterns actually correlated with the Martian topography below.
They have found that even at this high altitude the winds shift around the high volcanoes of the Tharsis Bulge.
To my eye, the wind pattern seen in the image, taken from the video at the link, is remarkably similar to the global wind patterns found on Venus, forming a widening V-pattern moving from east to west. Though the two are vastly different, the similarity is quite intriguing.