Maven makes first map of Mars’ high altitude winds

High altitude wind patterns on Mars

Scientists using the Martian orbiter Maven have produced the first global map of the high altitude wind circulation of Mars.

The measurements of winds that were recently mapped above Mars were found at an altitude range of about 140-240 kilometers (85-150 miles) above the planet’s surface.

The wind data has been gathered by the Neutral Gas and Ion Mass Spectrometer (NGIMS). NGIMS’ original purpose was to determine the structure and composition of the Martian atmosphere by measuring in it the amounts of ions (electrically charged particles) and gases. However, although it was not originally designed to do so, in April 2016, the MAVEN team began using NGIMS to observe horizontal winds. Pausing normal collection of data, scientists on Earth programmed the instrument to nod back and forth so that it could detect the direction of winds along its track.

By combining data from many tracks as MAVEN orbits Mars, scientists slowly built up a map of wind behavior. This led to a startling discovery: the wind patterns actually correlated with the Martian topography below.

They have found that even at this high altitude the winds shift around the high volcanoes of the Tharsis Bulge.

To my eye, the wind pattern seen in the image, taken from the video at the link, is remarkably similar to the global wind patterns found on Venus, forming a widening V-pattern moving from east to west. Though the two are vastly different, the similarity is quite intriguing.

The Winds of Mars

changing martian dunes
Images taken 1363 days apart.

In two different papers published in two different journals in the past month, scientists have concluded that — despite the thinness of the planet’s atmosphere — the dunes and sands of Mars are being continually shaped and changed by its winds. In both papers the data from which this conclusion was drawn came from high resolution images taken by the HiRISE camera on Mars Reconnaissance Orbiter.

What is especially interesting about this conclusion is that the climate models that had been developed for the Martian atmosphere, combined with wind measurements gathered by the various Martian landers, had all suggested that the kind of strong winds necessary to move sand were rare. To quote the abstract of the paper published on Monday in the journal Geology, Bridges, et al,

Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere.

Similarly, the second paper, Silvestro, et al, published on October 22 in Geophysical Research Letters, stated that

results from wind tunnel simulations and atmospheric models show that such strong wind events should be rare in the current Martian atmospheric setting.

Yet, both studies found significant evidence that such winds do occur on Mars, and are moving sand in many different places.
» Read more