Tag Archives: Gale Crater

NASA touts Curiosity images of Murray Buttes

A NASA press release on Friday highlighted some of the fantastic images of Murray Buttes that Curiosity has been taking for the past month and that have already been highlighted here several times at Behind the Black during the past several weeks.

Take a look. The images they show are not the same ones I have already posted, and are worth seeing.

New evidence suggest lake once existed in Gale Crater

Scientists have concluded that mineral veins seen by Curiosity in Gale Crater were created when a lake existed there.

The study suggests that the veins formed as the sediments from the ancient lake were buried, heated to about 50 degrees Celsius and corroded. Professor John Bridges from the University of Leicester Department of Physics and Astronomy said: “The taste of this Martian groundwater would be rather unpleasant, with about 20 times the content of sulphate and sodium than bottled mineral water for instance!”

Route to Balanced Rock

Route to Balanced Rock on Mars

The image above is a panorama I have created from the raw images taken by Curiosity’s left navigation camera today, using this image for the left half and this image for the right half. They show the terrain in front of the rover, including the balanced rock on the horizon, indicated by the arrow.

I have no idea what route the science team plans, but looking at all of the images, as well as their desire to get a closer look at the rock, I suspect they will head up to the left on the smoother ground, aiming almost directly at the balanced rock. I also suspect that they will eventually veer right before getting to the rock, since the rover can’t go over the rough terrain in that area. Stay tuned to find out.

Curiosity heads south

After four years of southwest travel to skirt a large dune field at the base of Mount Sharp, Curiosity has finally turned due south to aim directly up the mountain.

“Now that we’ve skirted our way around the dunes and crossed the plateau, we’ve turned south to climb the mountain head-on,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California. “Since landing, we’ve been aiming for this gap in the terrain and this left turn. It’s a great moment for the mission.”

Pinpointing Curiosity’s location in Gale Crater

Curiosity's traverse

The Curiosity science team recently released a new Mars Reconnaissance Orbiter image, showing Curiosity’s overall route since its landing on Mars in August 2012. I have posted a reduced version on the right.

Similarly, on the Curiosity website you can view this more detailed map of its traverse route. This map is updated regularly as Curiosity continues its climb up Mount Sharp.

Neither of these maps is to me very satisfying or useful, however. Neither shows the overall location of Curiosity within Gale Crater. Nor do they give one a sense of how far it is has come on its climb up the mountain. In fact, it is very unclear how close the rover actually is to the peak from either image.

Thus, I decided to do a little research to get some better context of Curiosity’s position and its overall journey.
» Read more

Getting higher on Mount Sharp

Looking across Gale Crater

Cool image time! The above image, cropped and reduced slightly for presentation here, was taken by one of Curiosity’s navigation cameras on March 2. Though the science team has not captioned it, I think it is looking down from the heights that Curiosity has climbed and across the plains of Gale Crater to its rim in the far distance. The image itself appears to have been taken after the rover spent several days climbing up to what they have dubbed Naukluft Plateau.

Be sure to check out the full resolution image that can be found here.

Curiosity heads for the dunes

Bagnold Dunes

The Curiosity science team has decided to send the rover towards some large active dunes, visible in its journey ahead up Mt. Sharp.

On its way to higher layers of the mountain where it is investigating how Mars’ environment changed billions of years ago, NASA’s Curiosity Mars rover will take advantage of a chance to study some modern Martian activity at mobile sand dunes.

In the next few days, the rover will get its first close-up look at these dark dunes, called the “Bagnold Dunes,” which skirt the northwestern flank of Mount Sharp. No Mars rover has previously visited a sand dune, as opposed to smaller sand ripples or drifts. One dune Curiosity will investigate is as tall as a two-story building and as broad as a football field. The Bagnold Dunes are active: Images from orbit indicate some of them are migrating as much as about 3 feet (1 meter) per Earth year. No active dunes have been visited anywhere in the solar system besides Earth.

In the image on the right the target dune is in the center beyond the dark ridge line in the foreground. It looks kind of like a pointed mesa. the dark sandy area on the center right just below the dark ridge line in the center of the image. (Newer images released today gave me a more correct idea of the dunes as shown in this image.) Click here to see the full image. The rover is presently about 200 yards from the first dune, and should reach it in the next few days.

More confirmation from Curiosity of past lakes in Gale Crater

New data from Curiosity has now provided further confirmation that the deeper sedimentary layers seen in Gale Crater were likely formed far in the past by flowing water.

“Paradoxically, where there is a mountain today there was once a basin, and it was sometimes filled with water,” said John Grotzinger, the former project scientist for Mars Science Laboratory at the California Institute of Technology in Pasadena, and lead author of the new report. “We see evidence of about 250 feet (75 meters) of sedimentary fill, and based on mapping data from NASA’s Mars Reconnaissance Orbiter and images from Curiosity’s camera, it appears that the water-transported sedimentary deposition could have extended at least 500 to 650 feet (150 to 200) meters above the crater floor.”

Furthermore, the total thickness of sedimentary deposits in Gale Crater that indicate interaction with water could extend higher still, perhaps up to one-half mile (800 meters) above the crater floor.

Above 800 meters, Mount Sharp shows no evidence of hydrated strata, and that is the bulk of what forms Mount Sharp. Grotzinger suggests that perhaps this later segment of the crater’s history may have been dominated by dry, wind-driven deposits, as was once imagined for the lower part explored by Curiosity.

This was always the reason to go and climb Mount Sharp. As Curiosity heads uphill it begins to map out the geological history of Mars, first as a wet place with liquid water, then as a dry place in which the water is gone.

Curiosity’s future path

Looking up Mt Sharp

Cool image time! The Curiosity science team has produced another panorama of Mount Sharp and the regions that the rover will soon traverse.

This composite image looking toward the higher regions of Mount Sharp was taken on September 9, 2015, by NASA’s Curiosity rover. In the foreground — about 2 miles (3 kilometers) from the rover — is a long ridge teeming with hematite, an iron oxide. Just beyond is an undulating plain rich in clay minerals. And just beyond that are a multitude of rounded buttes, all high in sulfate minerals. The changing mineralogy in these layers of Mount Sharp suggests a changing environment in early Mars, though all involve exposure to water billions of years ago. The Curiosity team hopes to be able to explore these diverse areas in the months and years ahead. Further back in the image are striking, light-toned cliffs in rock that may have formed in drier times and now is heavily eroded by winds.

They have adjusted the colors, adding blue, so that things look as they would on Earth, in order to help the geologists understand what they are looking at.

Be sure and click on the link. The full resolution image is quite amazing. Like mountains on Earth, from a distance things look a lot simpler than they do once you get there. The slopes of Mount Sharp are complex and rugged, and will be a big challenge for Curiosity to traverse.

Moreover, this rough terrain illustrates that the Martian surface has, like Earth, been significantly shaped by erosion. The surface we see here is not the surface produced by the impact that produced the crater. It has been reshaped and eroded over many eons by many later processes, including wind and water.

Petrified sand dunes on Mars

Petrified sand dunes on Mars

Cool image time! A panorama produced from images taken by Curiosity’s Mast camera has revealed the remains of ancient sand dunes, cemented into sandstone and now eroding.

This sandstone outcrop — part of a geological layer that Curiosity’s science team calls the Stimson unit — has a structure called crossbedding on a large scale that the team has interpreted as deposits of sand dunes formed by wind. Similar-looking petrified sand dunes are common in the U.S. Southwest. Geometry and orientation of the crossbedding give information about the directions of the winds that produced the dunes.

The Stimson unit overlies a layer of mudstone that was deposited in a lake environment. Curiosity has been examining successively higher and younger layers of Mount Sharp, starting with the mudstone at the mountain’s base, for evidence about changes in the area’s ancient environment.

The image above is cropped and reduced in resolution. Be sure to look at the original.

This report also suggests that Curiosity is definitely moving up the geological layers on Mount Sharp. With each layer, we learn a little bit more about the complex geological history of Gale Crater.

Curiosity looks ahead at its future travels

The future terrain at Mt Sharp

Cool image time! The above image is a cropped version of a full resolution image taken by Curiosity of the terrain the rover will be traveling in the coming years.

I have also enhanced the contrast slightly to bring out the details. The terrain is rugged and very diverse, from rounded buttes to rocky outcrops.

Gravel and sand ripples fill the foreground [not shown in my cropped version above], typical of terrains that Curiosity traversed to reach Mount Sharp from its landing site. Outcrops in the midfield are of two types: dust-covered, smooth bedrock that forms the base of the mountain, and sandstone ridges that shed boulders as they erode. Rounded buttes in the distance contain sulfate minerals, perhaps indicating a change in the availability of water when they formed. Some of the layering patterns on higher levels of Mount Sharp in the background are tilted at different angles than others, evidence of complicated relationships still to be deciphered.

Traversing this rugged terrain will be a challenge but it is necessary to obtain data that will help decipher its origins. The immediate goal will be to reach the light brown terrain in the distance. In the full image, that region gently slopes upward to the left to the mountain summit, providing a route to the rover’s eventual goal.

Sunset on Mars

sunset on Mars

Cool image time! The image above is not a sunset over the Blue Ridge Mountains of Tennessee. It is a beautiful blue sunset on Mars, taken by Curiosity from Gale Crater.

The image is the first sunset imaged by Curiosity in color, and is calibrated to match what the human eye would see.

Meanwhile, the rover’s journey continues, with a slight detour to check out an interesting hillside.

More evidence found for liquid water on Mars

A new study suggests that a liquid but very salty water does appear on Mars, during the night in the winter and spring months.

The team used Curiosity’s weather-monitoring equipment to look for those conditions and found that they occur every day in months throughout winter and spring. They suggest that overnight and before sunrise, some of the frost that forms on the planet’s surface interacts with the strong salts and turns liquid, seeping into the soil. This lines up with previous studies, which have detected geographic features that suggest flowing water.

The results come from the Gale Crater, which is itself too cold to support microbial life — even with liquid water present. But the study authors believe this phenomenon could occur anywhere on the planet, and may actually be more common in areas closer to the polar regions. Still, Mars is a pretty desolate place, and the amount of water we’re talking about is minimal at best. “There’s so little water that you can’t even see it visibly,” Morten Bo Madsen said.

Curiosity finds nitrates on Martian surface

Using data from Curiosity scientists have for the first time identified nitrates, also called fixed nitrogen, on the Martian surface.

There is no evidence to suggest that the fixed nitrogen molecules found by the team were created by life. The surface of Mars is inhospitable for known forms of life. Instead, the team thinks the nitrates are ancient, and likely came from non-biological processes like meteorite impacts and lightning in Mars’ distant past.


Features resembling dry riverbeds and the discovery of minerals that form only in the presence of liquid water suggest that Mars was more hospitable in the remote past. The Curiosity team has found evidence that other ingredients needed for life, such as liquid water and organic matter, were present on Mars at the Curiosity site in Gale Crater billions of years ago.

The data also suggests that these nitrates are widespread on the Martian surface.

The most important aspect of this discovery to me is not so much that it suggests the faint possibility of past life on Mars but that it makes Mars a more hospitable place for life in the future. Nitrates are essentially fertilizer, and for Mars to have this material in the soil already means it will be easier to figure out how to grow crops there.

Curiosity confirms that Gale Crater was once a water filled lake.

New geological data from Curiosity suggests that the interior of Gale Crater was shaped by sediments placed there by the rise and fall of a lake over millions of years.

The data also confirms that conditions on Mars were good enough for liquid water to be maintained on the surface for long periods of time. The problem is that scientists still do not understand how Mars could have maintained such kind of atmosphere and environmental conditions, based on its location and size.

A geological score for Curiosity!

Spectroscopy from Curiosity’s most recent drilling has been found to match and thus confirm the spectroscopy of the same spot taken years ago from orbit.

In observations reported in 2010, before selection of Curiosity’s landing site, a mineral-mapping instrument on NASA’s Mars Reconnaissance Orbiter provided evidence of hematite in the geological unit that includes the Pahrump Hills outcrop. The landing site is inside Gale Crater, an impact basin about 96 miles (154 kilometers) in diameter with the layered Mount Sharp rising about three miles (five kilometers) high in the center.

“We’ve reached the part of the crater where we have the mineralogical information that was important in selection of Gale Crater as the landing site,” said Ralph Milliken of Brown University, Providence, Rhode Island. He is a member of Curiosity’s science team and was lead author of that 2010 report in Geophysical Research Letters identifying minerals based on observations of lower Mount Sharp by the orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). “We’re now on a path where the orbital data can help us predict what minerals we’ll find and make good choices about where to drill. Analyses like these will help us place rover-scale observations into the broader geologic history of Gale that we see from orbital data.”

This is a significant finding. Not only does this data now prove that the orbital data is correct, it demonstrates that scientists can now use that orbital data to direct Curiosity to even more interesting geological surface features. In fact, this ground-based data will help them calibrate all their orbital data more precisely, thus making our geological knowledge of Mars more accurate and reliable.

Curiosity to begin climbing

Scientists have decided to begin Curiosity’s climb of Mount Sharp immediately rather than continue a planned traverse along the base of the mountain prior to heading uphill.

Curiosity’s trek up the mountain will begin with an examination of the mountain’s lower slopes. The rover is starting this process at an entry point near an outcrop called Pahrump Hills, rather than continuing on to the previously-planned, further entry point known as Murray Buttes. Both entry points lay along a boundary where the southern base layer of the mountain meets crater-floor deposits washed down from the crater’s northern rim.

The issues with Curiosity’s wheels also played a part in this decision.

Curiosity cancels drilling and moves on

Adventures on Mars: After finding that a candidate rock for drilling was not stable enough, Curiosity engineers have canceled the drilling and instead decided to continue the rover’s journey towards Mount Sharp, having chosen a new route that bypasses Hidden Valley, which was found to be too slippery.

Curiosity retreats from Hidden Valley

Finding its sandy floor slipperier than expected, engineers have backed Curiosity out of Hidden Valley to drill some holes while they reassess the rover’s route.

The rover’s wheels slipped more in Hidden Valley’s sand than the team had expected based on experience with one of the mission’s test rovers driven on sand dunes in California. The valley is about the length of a football field and does not offer any navigable exits other than at the northeastern and southwestern ends. “We need to gain a better understanding of the interaction between the wheels and Martian sand ripples, and Hidden Valley is not a good location for experimenting,” said Curiosity Project Manager Jim Erickson of JPL. …

Curiosity reversed course and drove out of Hidden Valley northeastward. On the way toward gaining a good viewpoint to assess a possible alternative route north of the valley, it passed over the pale paving stones on the ramp again. Where a rover wheel cracked one of the rocks, it exposed bright interior material, possibly from mineral veins.

More and more, the journey to Mount Sharp appears to be increasingly adventurous for the rover.

Curiosity’s journey continues

After more than a full Martian year, Curiosity has finally traveled beyond the area of its initial landing zone.

The 1-ton Curiosity rover has now cruised out of its landing ellipse, the area — about 4 miles wide by 12 miles long (7 by 20 kilometers) — regarded as safe ground for its August 2012 touchdown within Mars’ huge Gale Crater, NASA officials said.

The interesting factoid from this article is how much smaller this landing zone was for Curiosity compared to all other previous landers, illustrating how the technology has advanced during the last four decades since Viking.

Glaciers on Mars!

A geological study of orbital images of Gale Crater has led scientists to conclude that the crater was once covered in glaciers.

To carry out the study, the team has used images captured with the HiRISE and CTX cameras from NASA’s Mars Reconnaissance Orbiter, together with the HRSC onboard the Mars Express probe managed by the European Space Agency (ESA).

Analyses of the photographs have revealed the presence of concave basins, lobated structures, remains of moraines and fan-shaped deposits which point to the existence of ancient glaciers on Gale. In fact they seem to be very similar to some glacial systems observed on present-day Earth. “For example, there is a glacier on Iceland –known as Breiðamerkurjökull– which shows evident resemblances to what we see on Gale crater, and we suppose that is very similar to those which covered Gale’s central mound in the past,” says Fairén.

This is not the first place on Mars where scientists believe glaciers once flowed. The northwestern slopes of Arsia Mons, one of Mars’s giant volcanoes in the Tharsis Bulge, is also believed to have once harbored glaciers.

The Curiosity science team celebrates the completion of a full Martian year since the rover’s landing.

The Curiosity science team celebrates the completion of a full Martian year since the rover’s landing.

This is mostly a press event aimed at convincing the world that the project is accomplishing its goals. Though they are justified in touting the many significant things about Mars and the past environment in Gale Crater that Curiosity has uncovered, we mustn’t forgot that the main goal was always to climb the slopes of Mt Sharp in order to study its geological layers and thus the long term geological history of Mars. The rover has not yet done this, and because of the greater-than-expected wheel damage the rover is experiencing, is at risk of not being able to get where it has to go.

In celebration of the tenth anniversary of Opportunity’s landing on Mars, the journal Science publishes a special section of the newest findings from Mars.

In celebration of the tenth anniversary of Opportunity’s landing on Mars, the journal Science has published a special section of the newest findings from Mars.

The main conclusion of all this research is that Mars was once potentially habitable, though there is no evidence so far to show that anything actually inhabited it. The data obtained however is now giving scientists clues on the best places to look for the remains of that ancient life, should it exist.

Curiosity has succeeded in dating the age of one of its rock samples, the first time this has ever been done remotely on another planet.

Curiosity has succeeded in dating the age of one of its rock samples, the first time this has ever been done remotely on another planet.

The second rock Curiosity drilled for a sample on Mars, which scientists nicknamed “Cumberland,” is the first ever to be dated from an analysis of its mineral ingredients while it sits on another planet. A report by Kenneth Farley of the California Institute of Technology in Pasadena, and co-authors, estimates the age of Cumberland at 3.86 billion to 4.56 billion years old. This is in the range of earlier estimates for rocks in Gale Crater, where Curiosity is working.

This is significant engineering and scientific news. In the past the only way to date the rocks on another world was to bring them back to Earth. This was how the moon’s geology was dated. On Mars, dating has only been done by crater counting, comparing those counts with those on the Moon, and then making a vague guess. To have the ability to date rocks remotely means that geologists can begin to sort out the timeline of Mars’s geology without having to bring back samples.

The press lets Curiosity get the better of them

The big news is out. Today the eagerly awaited press conference at the American Geophysical Society meeting in San Francisco on the recent results from the Mars rover Curiosity was finally held. The announced results had been hyped like crazy when rumors began to spread a few weeks ago that Curiosity had discovered something truly spectacular.

Well, here are some of the headlines heralding the results.
» Read more

1 2