The uncertainty of science: Astronomers now believe that Type 1a supernovae — used to discover dark energy — can be produced in two different ways.
Type Ia supernovae are known to originate from white dwarfs – the dense cores of dead stars. White dwarfs are also called degenerate stars because they’re supported by quantum degeneracy pressure. In the single-degenerate model for a supernova, a white dwarf gathers material from a companion star until it reaches a tipping point where a runaway nuclear reaction begins and the star explodes. In the double-degenerate model, two white dwarfs merge and explode. Single-degenerate systems should have gas from the companion star around the supernova, while the double-degenerate systems will lack that gas.
For astronomers, this possibility raises several conflicting questions. If two different causes produce Type 1a supernovae, could their measurement of dark energy be suspect? And if not, why is it that these two different causes produce supernovae explosions that look so much alike?