Astronomers detect exoplanet half as massive as the Earth around second closest star system
Using the Very Large Telescope (VLT) in Chile, astronomers have detected evidence of an exoplanet about half as massive as the Earth orbiting Barnard’s Star, only six light years away and the second closest star system.
Barnard’s Star is a prime target in the search for exoplanets due to its proximity and its status as a red dwarf, a common type of star where low-mass planets are often found. Despite a promising signal detected in 2018, no planet had been definitively confirmed around it until now. The ESPRESSO spectrograph [on VLT] … enabled the astronomers to detect Barnard b, a subterrestrial planet that orbits the star in 3.15 days. The team also identified signals indicating the possible presence of three other candidate exoplanets, which have yet to be confirmed.
Back in the 1960s using the less precise instruments of the time, astronomers thought they had detected an exoplanet orbiting Barnard’s Star. That detection however proved false. The detection is real, however, and adds weight to the growing evidence that planets can form around red dwarf stars, the most common stars in the universe with the longest lifespan, predicted to be many tens of billions of years. Having planets around such stars significantly increases the chances of habitable planets, even if those planets do not harbor life of its own.
Using the Very Large Telescope (VLT) in Chile, astronomers have detected evidence of an exoplanet about half as massive as the Earth orbiting Barnard’s Star, only six light years away and the second closest star system.
Barnard’s Star is a prime target in the search for exoplanets due to its proximity and its status as a red dwarf, a common type of star where low-mass planets are often found. Despite a promising signal detected in 2018, no planet had been definitively confirmed around it until now. The ESPRESSO spectrograph [on VLT] … enabled the astronomers to detect Barnard b, a subterrestrial planet that orbits the star in 3.15 days. The team also identified signals indicating the possible presence of three other candidate exoplanets, which have yet to be confirmed.
Back in the 1960s using the less precise instruments of the time, astronomers thought they had detected an exoplanet orbiting Barnard’s Star. That detection however proved false. The detection is real, however, and adds weight to the growing evidence that planets can form around red dwarf stars, the most common stars in the universe with the longest lifespan, predicted to be many tens of billions of years. Having planets around such stars significantly increases the chances of habitable planets, even if those planets do not harbor life of its own.