“One of the greatest discoveries of the century is based on these things and we don’t even know what they are, really.”
The uncertainty of science: New research suggests that astronomers have little understanding of the supernovae that they use to estimate the distance to most galaxies, estimates they then used to discover dark energy as well as measure the universe’s expansion rate.
The exploding stars known as type Ia supernovae are so consistently bright that astronomers refer to them as standard candles — beacons that are used to measure vast cosmological distances. But these cosmic mileposts may not be so uniform. A new study finds evidence that the supernovae can arise by two different processes, adding to lingering suspicions that standard candles aren’t so standard after all.
The findings, which have been posted on the arXiv preprint server and accepted for publication in the Astrophysical Journal, could help astronomers to calibrate measurements of the Universe’s expansion. Tracking type Ia supernovae showed that the Universe is expanding at an ever-increasing rate, and helped to prove the existence of dark energy — advances that secured the 2011 Nobel Prize in Physics.
The fact that scientists don’t fully understand these cosmological tools is embarrassing, says the latest study’s lead author, Griffin Hosseinzadeh, an astronomer at the University of California, Santa Barbara. “One of the greatest discoveries of the century is based on these things and we don’t even know what they are, really.”
The key to understanding this situation is to maintain a healthy skepticism about any cosmological theory or discovery, no matter how enthusiastically touted by the press and astronomers. The good astronomers do not push these theories with great enthusiasm as they know the feet of clay on which they stand. The bad ones try to use the ignorant mainstream press to garner attention, and thus funding.
For the past two decades the good astronomers have been diligently checking and rechecking the data and the supernovae used to discover dark energy. Up to now this checking seems to still suggest the universe’s expansion is accelerating on large scales. At the same time, our knowledge of supernovae remains sketchy, and thus no one should assume we understand the universe’s expansion rate with any confidence.
The uncertainty of science: New research suggests that astronomers have little understanding of the supernovae that they use to estimate the distance to most galaxies, estimates they then used to discover dark energy as well as measure the universe’s expansion rate.
The exploding stars known as type Ia supernovae are so consistently bright that astronomers refer to them as standard candles — beacons that are used to measure vast cosmological distances. But these cosmic mileposts may not be so uniform. A new study finds evidence that the supernovae can arise by two different processes, adding to lingering suspicions that standard candles aren’t so standard after all.
The findings, which have been posted on the arXiv preprint server and accepted for publication in the Astrophysical Journal, could help astronomers to calibrate measurements of the Universe’s expansion. Tracking type Ia supernovae showed that the Universe is expanding at an ever-increasing rate, and helped to prove the existence of dark energy — advances that secured the 2011 Nobel Prize in Physics.
The fact that scientists don’t fully understand these cosmological tools is embarrassing, says the latest study’s lead author, Griffin Hosseinzadeh, an astronomer at the University of California, Santa Barbara. “One of the greatest discoveries of the century is based on these things and we don’t even know what they are, really.”
The key to understanding this situation is to maintain a healthy skepticism about any cosmological theory or discovery, no matter how enthusiastically touted by the press and astronomers. The good astronomers do not push these theories with great enthusiasm as they know the feet of clay on which they stand. The bad ones try to use the ignorant mainstream press to garner attention, and thus funding.
For the past two decades the good astronomers have been diligently checking and rechecking the data and the supernovae used to discover dark energy. Up to now this checking seems to still suggest the universe’s expansion is accelerating on large scales. At the same time, our knowledge of supernovae remains sketchy, and thus no one should assume we understand the universe’s expansion rate with any confidence.