Astronomers claim radio data detects much of the universe’s “missing mass”
The uncertainty of science: Using radio data from 60 fast radio bursts scattered across the sky, astronomers think they have detected the signature of much of the universe’s “missing mass” that has until now been ascribed to some unknown material dubbed dark matter but in fact is mostly ordinary matter that was previously unobserved.
The results show that about 76% of baryonic matter is in the intergalactic medium, 15% is in the halos around galaxies and the rest is inside stars or cold galactic gas.
From the paper’s abstract:
Approximately half of the Universe’s dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The majority are diffuse (<10−3 cm−3) and ionized (neutral fraction <10−4), located in the intergalactic medium (IGM) and in the halos of galaxy clusters, groups and galaxies.
In other words, the dark matter is simply ordinary matter made up of ionized “diffuse ionized gas” that ” is notoriously difficult to measure.”
One major uncertainty of this result is its dependence on fast radio bursts. The scientists claim the sixty bursts they used came from distances ranging from 12 million to 9 billion light years, but it is unclear how they determined those distances. We do not currently know the source of fast radio bursts, which means we also do not really know exactly where they occur or how distant they are from us. This research however relies on that uncertain knowledge, because it measures the changes to each burst’s radio emissions as it travels through intergalactic space.
Nonetheless, if confirmed this result shouldn’t surprise us. The universe is gigantic and mostly hard to observe. For there to be a gigantic amount of undetected ordinary matter scattered between the galaxies is perfectly reasonable. Inventing something extraordinary — dark matter — is actually a far more unreasonable scientific strategy.
The uncertainty of science: Using radio data from 60 fast radio bursts scattered across the sky, astronomers think they have detected the signature of much of the universe’s “missing mass” that has until now been ascribed to some unknown material dubbed dark matter but in fact is mostly ordinary matter that was previously unobserved.
The results show that about 76% of baryonic matter is in the intergalactic medium, 15% is in the halos around galaxies and the rest is inside stars or cold galactic gas.
From the paper’s abstract:
Approximately half of the Universe’s dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The majority are diffuse (<10−3 cm−3) and ionized (neutral fraction <10−4), located in the intergalactic medium (IGM) and in the halos of galaxy clusters, groups and galaxies.
In other words, the dark matter is simply ordinary matter made up of ionized “diffuse ionized gas” that ” is notoriously difficult to measure.”
One major uncertainty of this result is its dependence on fast radio bursts. The scientists claim the sixty bursts they used came from distances ranging from 12 million to 9 billion light years, but it is unclear how they determined those distances. We do not currently know the source of fast radio bursts, which means we also do not really know exactly where they occur or how distant they are from us. This research however relies on that uncertain knowledge, because it measures the changes to each burst’s radio emissions as it travels through intergalactic space.
Nonetheless, if confirmed this result shouldn’t surprise us. The universe is gigantic and mostly hard to observe. For there to be a gigantic amount of undetected ordinary matter scattered between the galaxies is perfectly reasonable. Inventing something extraordinary — dark matter — is actually a far more unreasonable scientific strategy.