First results from Cassini’s dives between Saturn and its rings
The first results from Cassini’s weekly dives between Saturn and its innermost rings have now been released.
The big surprise so far is the lack of a tilt to Saturn’s magnetic field.
Based on data collected by Cassini’s magnetometer instrument, Saturn’s magnetic field appears to be surprisingly well-aligned with the planet’s rotation axis. The tilt is much smaller than 0.06 degrees — which is the lower limit the spacecraft’s magnetometer data placed on the value prior to the start of the Grand Finale.
This observation is at odds with scientists’ theoretical understanding of how magnetic fields are generated. Planetary magnetic fields are understood to require some degree of tilt to sustain currents flowing through the liquid metal deep inside the planets (in Saturn’s case, thought to be liquid metallic hydrogen). With no tilt, the currents would eventually subside and the field would disappear.
Any tilt to the magnetic field would make the daily wobble of the planet’s deep interior observable, thus revealing the true length of Saturn’s day, which has so far proven elusive.
They also have gotten lots of much better images of the planet’s cloud tops.
The first results from Cassini’s weekly dives between Saturn and its innermost rings have now been released.
The big surprise so far is the lack of a tilt to Saturn’s magnetic field.
Based on data collected by Cassini’s magnetometer instrument, Saturn’s magnetic field appears to be surprisingly well-aligned with the planet’s rotation axis. The tilt is much smaller than 0.06 degrees — which is the lower limit the spacecraft’s magnetometer data placed on the value prior to the start of the Grand Finale.
This observation is at odds with scientists’ theoretical understanding of how magnetic fields are generated. Planetary magnetic fields are understood to require some degree of tilt to sustain currents flowing through the liquid metal deep inside the planets (in Saturn’s case, thought to be liquid metallic hydrogen). With no tilt, the currents would eventually subside and the field would disappear.
Any tilt to the magnetic field would make the daily wobble of the planet’s deep interior observable, thus revealing the true length of Saturn’s day, which has so far proven elusive.
They also have gotten lots of much better images of the planet’s cloud tops.