NASA considering ion engines for next Mars orbiter
Rather than using conventional chemical thrusters for a Mars orbiter planned for the 2020s, NASA managers are considering using ion engines instead.
Worried its fleet of Mars orbiter is aging, NASA intends to dispatch the spacecraft to the red planet in September 2022 to link ground controllers with rovers and extend mapping capabilities expected to be lost when the Mars Reconnaissance Orbiter stops functioning.
Engineers also want to add ion engines to the orbiter and fly the efficient electrically-powered thruster system to Mars for the first time, testing out a solar-electric propulsion package that officials say will be needed when astronauts visit the red planet. Ion engines produce just a whisper of thrust, using electric power to ionize atoms of a neutral gas and spit out the particles at high speed. While the drive given by the thrusters is barely noticeable in one instant, they can operate for months or years, burning scant fuel compared to traditional chemical rockets.
That this decision requires long-winded and extended high level negotiations at NASA illustrates the slow and lumbering nature of government. Private enterprise is embracing ion engines now, and NASA itself is seeing its own spectacular ion engine success with Dawn. The decision should be a no-brainer, especially because the benefits of ion engines (low weight, more power, greater flexibility) are so obvious.
Rather than using conventional chemical thrusters for a Mars orbiter planned for the 2020s, NASA managers are considering using ion engines instead.
Worried its fleet of Mars orbiter is aging, NASA intends to dispatch the spacecraft to the red planet in September 2022 to link ground controllers with rovers and extend mapping capabilities expected to be lost when the Mars Reconnaissance Orbiter stops functioning.
Engineers also want to add ion engines to the orbiter and fly the efficient electrically-powered thruster system to Mars for the first time, testing out a solar-electric propulsion package that officials say will be needed when astronauts visit the red planet. Ion engines produce just a whisper of thrust, using electric power to ionize atoms of a neutral gas and spit out the particles at high speed. While the drive given by the thrusters is barely noticeable in one instant, they can operate for months or years, burning scant fuel compared to traditional chemical rockets.
That this decision requires long-winded and extended high level negotiations at NASA illustrates the slow and lumbering nature of government. Private enterprise is embracing ion engines now, and NASA itself is seeing its own spectacular ion engine success with Dawn. The decision should be a no-brainer, especially because the benefits of ion engines (low weight, more power, greater flexibility) are so obvious.