The end of a 400-mile-long Martian escarpment

The end of a 400-mile-long escarpment
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on August 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter. It shows the cracked top of a enscarpment, with the bottom point to the west about 2,400 feet lower in elevation.

The north-south cracks at the top of the cliff indicate faults. They also suggest that the cliff itself its slowly separating from eastern plateau. North from this point, beyond the edge of this picture, are several places where such a separation has already occurred, with the collapsed cliff leaving a wide pile of landslide debris at the base.

This cliff actually continues north for another 400 miles, suggesting that the ground shifted along this entire distance, with the ground to the east going up and ground to the west going down. Because the cliff is such a distinct and large feature, it has its own name, Claritas Rupes, “rupes” being the Latin word for cliff.
» Read more

Martian crater or mud caldera?

Martian crater or volcano?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists only call this a “feature,” likely because they don’t wish to guess as to its nature without more data. However, the 2.5 mile wide splash apron around the central double crater certainly merits a closer look. That double crater could be from impact, but it also could be a caldera, with the apron the result of material that flowed from the caldera.

That there appear to be fewer craters on the apron than on the surrounding terrain strengthens this last hypothesis. The apron would have erased many earlier impact craters, resulting in this lower count.

The location however suggests that if this feature was volcanic in origin it might not have been spewing out magma.
» Read more

Craters in a row

Craters in a row
Click for original image.

Cool image time from Mars! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 13, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It highlights a string of craters, all lined up in an almost straight line.

Were these craters caused by the impact of an asteroid that broke up as it burned its way through the thin Martian atmosphere? The lack of any raised rims argues instead that these are sinks produced not from impact but from a collapse into a void below, possibly a fault line.

Yet, almost all of the craters in this image, even those not part of this crater string, show no raised rims. If sinks, the voids below don’t seem to follow any pattern, which once again argues in favor of random impacts, with the string produced by a bolide breaking up just prior to hitting the ground.
» Read more

The steep mountain slopes inside Valles Marineris

Overview map

The steep mountain slopes inside Valles Marineris
Click for full image.

Time for another cool image showing the dramatically steep terrain of Valles Marineris on Mars, the largest known canyon in the solar system. The picture to the right, cropped, reduced, and enhanced to post here, was taken on October 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists rightly label this picture “Steep Slopes in West Melas Chasma”. The red dot marks the high point on this ridgeline. The green dot at the upper left marks the lowest point in the picture, about 4,800 feet below the peak. The blue dot on the right edge marks the low point on the ridge’s eastern flank, about 4,600 feet below the peak. The cliff to the east of the peak drops quickly about 1,300 feet in less than a mile.

On the overview map above, the white dot marks the location. The inset is an oblique view, created from a global mosaic of MRO’s context camera images, with the white rectangle indicating approximately the area covered by the picture above.

The immense scale of Valles Marineris must once again be noted. The elevations in this picture are comparable to the descent you make hiking down from the South Rim of the Grand Canyon. They pale however when compared to Valles Marineris. In the inset I have indicated the rim and floor of Valles Marineris in this part of the canyon. The elevation distance between the two is 18,000 feet.

In other words, the canyon to the east of this ridge is quite comparable in size to the Earth’s Grand Canyon, and it is hardly noticeable within the larger canyon of Valles Marineris.

The big 25th anniversary of ISS is really still two years away

The first crew of ISS, from left to right, Yuri Gidzenko, Sergei Krikalev, Bill Shepherd
The first crew of ISS, from left to right,
Yuri Gidzenko, Sergei Krikalev, Bill Shepherd

In a press release today NASA touted the 25th anniversary of the mating in orbit of the first two modules of the International Space Station (ISS), Zarya (built by Russia but paid for by the U.S.) and Unity (built by Boeing for NASA).

25 years ago today, the first two modules of the International Space Station – Zarya and Unity – were mated during the STS-88 mission of space shuttle Endeavour. The shuttle’s Canadarm robotic arm reached out and grappled Zarya, which had been on orbit just over two weeks, and attached it to the Unity module stowed inside Endeavour’s payload bay. Endeavour would undock from the young dual-module station one week later beginning the space station assembly era.

Though this anniversary is nice, it really isn’t the most significant. The most significant ISS anniversary is still two years away, when we celebrate 25 years of continuous human presence in space. That record began on October 31, 2000, when a Soyuz-2 rocket lifted off from Baikonur in Kazahkstan, carrying American Bill Shepherd and Russians Yuri Gidzenko and Sergei Krikalev on what was to be the first crew occupancy of the station. Since that launch humans have occupied ISS without break.

With the present operation of China’s space station, and about four American commercial stations under development as well as plans by India and Russia to build their own, it is very likely that October 30, 2000 will remain the last day in human history where no human was in space.

That is the significant date. That is the moment in history that should be noted and marked as significant.

Big Martian gullies partly filled with glacial material

Overview map

Big Martian gullies partly filled with glacial material

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists dub as “large gullies with infilled alcoves.”

Gullies on Mars were one of the first discoveries by orbiters of small-scalle potential water-caused features on the Red Planet. The favorite explanation for their formation today involves the seasonal freeze-thaw cycle, combined with the deposition of ice and dry ice frost in the winter. When that ice and dry ice sublimates away in the spring it causes collapse and erosion, widening the gullies.

These gullies also exhibit evidence that underground and glacial ice might contribute as well. The material in the largest gullies looks like a mixture of glacial material and dust and debris. It could also be that there is ice impregnated in the ground, which can cause large collapses when it sublimates away.

The white rectangle on the overview map and inset above marks the location of this picture, on the western rim of a 13-mile-wide unnamed crater inside the western portion of the 2,000-mile-long mid-latitude strip on Mars I dub glacier country, since every image from orbit shows evidence of glaciers.

This picture is no different, as the horizontal cracks at the base of the crater rim suggests the glacier that fills the crater floor is being pulled apart by gravity at its edges. The elevation drop from the top of the rim to the floor is about 3,200 feet, so any ice on that slope will definitely be stressed by gravity. Such cracks are therefore not surprising.

Psyche takes its first pictures

The spacecraft Psyche — going to the metal asteroid Psyche — has successfully taken its first pictures, proving its camera and pointing system work as planned.

The pictures, taken on December 4, 2023 from about 16 million miles from Earth, are actually quite boring, merely showing a field of stars. However,

The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images. …The imager takes pictures through multiple color filters, all of which were tested in these initial observations.

At this moment all looks good for Psyche’s eventual arrival at Psyche in 2029.

Mars Reconnaissance Orbiter takes another look at the non-face on Mars

The non-face on Mars
Click for original image

In 2007, shortly after it began science operations in Mars orbit, the science team for Mars Reconnaissance Orbiter (MRO) pointed its high resolution camera at the so-called “Face on Mars”, taking a picture that confirmed (as had Mars Global Surveyor several years earlier) that this “face” was a non-face, simply a mesa whose features made it appear roughly facelike in low resolution imagery.

Now, more than sixteen years later, scientists have used MRO to take a new picture of the non-face mesa. That picture is to the right, cropped, reduced, and sharpened to post here. Compared to the 2007 photo the new photo has far better lighting conditions, revealing many details on the mesa’s eastern half that were mostly obscured by shadows previously.

In fact, these new details strongly suggest that the depression on the mesa’s eastern slopes harbors a decaying glacier. At least, that is what the features there resemble.
» Read more

Lava-filled Martian crater

Lava-filled Martian crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the northeast corner of an unnamed 7-mile-wide crater, located near the equator in the dry Martian tropics.

The MRO science team labels this “crater and lava fill”, suggesting that the crater interior is filled with lava material. The nature of that crater floor reinforces this conclusion, as it is relatively smooth and does not have rough aspects of glacial material found in craters in the mid-latitudes. Instead, it looks like a frozen lake of lava that has the peaks of mostly buried features poking up at various spots.

What makes this crater interesting however are the gullies on the northern interior rim. Gullies on Mars are normally thought to be associated with some water-frost-ice process, probably seasonal, where the thaw-freeze cycle causes small collapses and avalanches. Yet, this crater is almost at the equator, in a very dry region where no evidence of near-surface ice is found. Gullies here suggest the hypothesis for explaining the gullies on Mars have not quite solved the mystery.
» Read more

Thick windblown ash in Mars’ largest mountain region

Thick windblown ash near Mars' largest volcano
Click for original picture.

The cool image to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the scientists label as “Erosional Features on Olympus Mons.”

What is eroding? Based on the picture itself the first guess is volcanic ash, as these features strongly resemble the many features seen in the Medusae Fossae Formation, the largest volcanic ash field on Mars — about the size of the subcontinent of India.

Medusae however is many thousand miles away, and is not apparently related to any specific volcano. These features are instead directly linked to Olympus Mons, the largest known volcano in the solar system. However, much of the terrain for many hundreds of miles around Olympus is covered with flood lava, which was deposited and hardened quickly to form smooth featureless plains that have resisted much erosion over the eons. Here the terrain is clearly eroded, which suggests that if the material here is volcanic, it was laid down not by flood lava but by falling ash that got compressed but was easily friable and could be blown away by the winds of Mars’ thin atmosphere.
» Read more

Close-up of Helene, one of Saturn’s many many moons

Helene, as seen by Cassini in 2011
Helene, as seen by Cassini in 2011

Cool image time! Though the Saturn orbiter Cassini is long gone, having been sent into Saturn’s atmosphere to burn up in 2017, its image archive of magnificent pictures is still available to peruse. To encourage others to do so, NASA today issued a series of press releases, listing the spacecraft’s top ten pictures from 2011, 2012, 2013, 2014, and 2015.

The picture to the right, cropped, reduced, and sharpened to post here, comes from the 2011 collection and was taken on June 18, 2011. It shows a close-up of 21-mile-wide Helene, one of Saturn’s many many moons and only discovered in 1980. Back in 2010 I featured another Cassini image of Helene, but that picture did not reveal the small surface features seen in the photo to the right.

The light and dark streaks probably indicate dust flowing downhill on the surface. Though the gravity of this object is tiny, it will be enough for dust to act like almost like a liquid, flowing down grade and then pooling in the central pond at the lowest point near the center of the picture. That process is so much like liquid flowing that it appears to have even eroded gullies on slopes near the top and bottom of the picture.

Side note: NASA’s “Science Editorial Team” also issued a press release today that falsely and ignorantly claimed these releases were “to celebrate 10 years since arriving at Saurn,” implying that Cassini arrived in 2013 and is still functioning.

The problem is that Cassini arrived in orbit around Saturn in 2004 and as I noted above ended its mission in 2017. It thus appears that the NASA Science Editorial Team is unable to do even one five-second web search to find out what really happened.

Just another data point indicating the dark age we now live in.

Mars’ giant sinkholes

The floor of one of Mars' giant sinkholes

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the floor and northern slope of Hebes Chasma, one of the many very large enclosed pits that can be found to the north of Valles Marineris, the largest canyon in the solar system. Though Hebes seems small next to the 1,500 mile long Valles Marineris, it still is 200 miles long by 80 miles wide, and could easily fit a half dozen Grand Canyons within it.

For example, the Grand Canyon is from 4,420 to 5,400 feet deep, hiking down from the south and north rim lodges respectively, which sit about ten miles apart. On this picture, the peak on the right sits about 5,300 feet above and only about 3.8 miles from the low spot on the bottom left, which means this one small picture encapsulates the Grand Canyon. And yet, the northern rim of Hebes sits another 21,000 feet higher and twelve miles away. And the entire chasma itself extends 50 miles to the west, 150 miles to the east, and 50 miles to the south.
» Read more

Striped terrain on Mars

Overview map

Striped terrain on Mars
Click for original image.

Today’s cool image will be a mystery with the answer below the fold. Before you look at the answer, however, you must try to come up with your own explanation for the picture to the right, cropped to post here, that was taken on September 25, 2018 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

What we see in this picture is what looks like a striped terrain, alternating bands of light and dark. What caused the bands? Why the different colors?

The overview map above provides some clues. The white rectangle inside Juventae Chasma near the map’s center marks the area within which this picture was taken, though the picture to the right covers only about a pixel inside that rectangle.

Can you guess what these stripes reveal, from this little information? For this quiz to work you must make a guess, but be prepared to be wrong and quickly reassess your conclusions. Such is the real scientific method, so rarely taught now in schools.
» Read more

Martian ice sheets sublimating like peeling paint?

Overview map

Martian ice sheets resembling paint peeling
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 19, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The features are described as “ribbed terrain” in the label. To my eye they more resemble flakes of peeling paint, most especially the mesas in the lower left. On the full image there are many more examples that resemble old paint peels, barely attached to the wall.

The white dot on the overview map above marks the location, deep inside the 2,000-mile-long strip in the northern mid-latitudes I dub glacier country, because everything seems covered by glacial features. This location is at 42 degrees north latitude, where plenty of near-surface ice features are found on Mars.

At first glance it looks like the top “paint-peel” layers to the south have been slowly sublimating away, leaving behind the smooth plain to the north. The problem is that this smooth area in the full image actually appears to be a glacial ice sheet of its own, filling all the low areas between mesas.

In other words, we are probably looking at layers and layers of ice sheets, each created during a different Martian climate cycle, caused by the wide swings of the planet’s rotational tilt, or obliquity.

The location is within Arabia Terra, the largest transitional zone on Mars between the northern lowland plains and the southern cratered highlands. Thus it sits above the glaciers that fill the lower regions of chaos to the north. What we have here is terrain that will eventually become chaos terrain, as the narrow faults and cracks are slowly widened into canyons by the cycles of glacial activity.

Ancient volcanic vent on Mars

Volcanic vent on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The picture label describes it as a “Low Shield Vent and Pit Northeast of Arsia Mons,” suggesting these depressions are volcanic in nature. We know the pit in the lower left is not an impact crater because it has no raised rim of ejecta. Instead, it looks like a collapsed sinkhole, formed when the ceiling above a void could no longer support its weight. Similar, the trench to the northeast is aligned with the downhill grade to the northeast, with its features suggesting a vent draining in that direction.

The ample dust inside the trench and pit suggest that it has been a very long time since this vent was active. Research suggests volcanic activity last occurred in this region from 10 to 300 million years ago, so that gives us a rough estimate of this vent’s age. Since then any dust that is blown into it will tend to become trapped there.
» Read more

Webb: Needles scattered near the center of the Milky Way

Needles in space
Click for original image.

Scientists today released a new false-color infrared image taken by the Webb Space Telescope of a region about 300 light years from the center of the Milky Way, dubbed Sagittarius-C. That picture is to the right, cropped, reduced and sharpened to post here. The blue or cyan regions are ionized hydrogen clouds, and with this image were revealed to be much more extensive than expected. The orange blob near the center is a densely packed cluster of protostars, the starlight blocked by the cloud of material.

The most interesting feature however are the needle-like structures within that ionized hydrogen, oriented in all directions in a manner that looks completely random. Though such needles have been seen previously, the data here is far more detailed, and might eventually help astronomers figure out what the heck these features are and what caused them.

The southernmost extent of Mars’ youngest lava flood event

The southernmost edge of Mars' youngest lava event
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

Labeled “flow margin in Elysium Planitia,” it shows the very edge of what scientists believe was the most recent large lava event on Mars, dubbed the Athabasca Valles, that is thought to have occurred only 600 million years ago. In only a matter of weeks the fast flowing lava covered a region about the size of Great Britain. What we see here is the southernmost edge of that flow, with the smooth terrain on the west an older lava flood plain, covered by the new flood lava from Athabasca on the east.

The polygon cracks likely indicate cracks that formed during the hardening process (like the polygon cracks in drying mud). Hot lava then pushed up from below to form the ridges. It is also possible the ridges are what scientists call “wrinkle ridges,” formed when material shrinks during the drying process.
» Read more

Jupiter’s Great Red Spot continues to shrink, possibly to its smallest size ever measured

Jupiter, as seen by Hubble in 2020
A 2020 Hubble picture of Jupiter.
Click for full image.

Long term data from numerous observatories shows that the Great Red Spot on Jupiter, the largest and longest lasting storm in the solar system, has been continuously shrinking for decades, and appears approaching this year its smallest size ever measured.

Despite so many factors working to keep it “alive” the Spot may be in need of life support. It’s been shrinking for decades. In 2012 the rate of shrinkage abruptly accelerated, something many amateur observers have commented on since that time. Several years later, while still shrinking in diameter, it expanded in latitude becoming more circular. Now it’s narrowed again and continues to diminish in both axes. This observing season I’ve been struck by the Spot’s unusually small size. That, along with its pale pink color and turbulent environment, have made it less obvious than ever.

…Using the WinJUPOS program and one of his recent high-resolution images, Peach measured the Great Red Spot’s diameter on November 6, 2023, at 12,500 kilometers or about 7,770 miles across. If confirmed it would make this season’s GRS not only smaller than the Earth (12,756 kilometers or 7,926 miles across) but the smallest size in observational history. A British Astronomical Association Jupiter section bulletin on October 30th described it as “the smallest it has ever been.” That’s a far cry from the late 1800s when the Spot ballooned to 41,000 kilometers (25,500 miles) — big enough to swallow three Earths with room to spare. Now it can barely contain one!

No one knows if this shrinkage is merely a normal long term fluctuation, or a sign that this many-centuries-old storm is finally dissippating. When it comes to the solar system’s gas giants, their size and long orbits make any firm conclusion difficult in only a few centuries of observation. To understand them properly will likely require thousands of years of observations, covering many orbits and seasons.

Lava/ice eruptions on Mars

Lava/ice eruptions on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled by the science team as showing “possible lava-ice interaction,” the photo features some pimply-looking mounds that, though round like craters, sit above the surrounding landscape like small volcanoes.

That these are likely not ancient pedestal impact craters that now sit higher because their material is packed and can resist erosion is illustrated by the bridge-like mound in the lower right. This mound was likely once solid, but its north and south sections have disappeared, either by erosion or sublimation. If formed by an impact the mound would have had a depression in its top center, and would have only eroded outside the rim.
» Read more

Intuitive Machines will attempt to launch 3 lunar landing missions in 2024

South Pole of Moon with landing sites

According to the company’s CEO, Intuitive Machines is pushing to fly two more Nova-C lunar landing missions next year after its first is launched by SpaceX on January 12th and hopefully lands successfully near the Moon’s south pole on January 19th.

Intuitive Machines is working on two more Nova-C landers for its IM-2 and IM-3 missions, also carrying NASA CLPS payloads. The company has not announced launch dates for those missions, but Altemus said he hoped both could take place by the end of 2024.

“We are planning three missions in 2024,” he said, which will depend in part on NASA’s requirements as well as orbital dynamics. Landings at the south polar region of the moon, the target for IM-2, are linked to “seasons” where lighting conditions are optimal for lander operations. IM-3, he said, would happen “a few months” after IM-2.

Though Nova-C will launch after Astrobotic’s Peregrine lander (launching on ULA’s Vulcan rocket), it will get to the Moon quickly, and will attempt its landing first. If successfully it will therefore be the first private payload to do so.

The company’s ambitions for 2024 are laudable, but depend so entirely on everything going perfectly it will not be surprising if they do not pan out. Nor will it reflect badly on the company if just one mission flies in 2024. Landing a robot on another world is hard. For private companies to do it is harder.

The caldera wall of a Martian giant volcano

The caldera wall of Pavonis Mons
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on June 8, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the top half of the northwestern interior wall of the central caldera of Pavonis Mons, the center volcano in the string of three giant volcanos found in Mars’ equatorial regions.

The elevation change from the top to the bottom of this picture is about 7,000 feet, though this covers only half the distance down to the floor of the caldera. The picture was taken as part of a survey of this caldera wall.

Volcanic activity here is thought to have ended more than a billion years ago. Thus we are looking at relatively old terrain that has had many eons to be reshaped since the last eruption.
» Read more

The strange craters in the high northern latitudes of Mars

The strange craters in the Martian northern lowlands
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on August 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have also inserted data from a July 28, 2008 context camera image into the blank strip that now exists in the center of high resolution camera images due to the failure of one sensor.

This photo is what the camera team calls a terrain sample, and was probably taken not as part of any specific request but to fill a gap in the camera’s schedule in order to maintain its proper temperature. When the camera team does this they try to find locations that either have not been observed in much detail previously or have interesting features. In this case the team accomplished both. The interesting features are the two pedestal craters, both surrounded by splash aprons. Neither has been observed in high resolution previously, and the context camera has only taken two pictures of this location in total.
» Read more

Strange meandering ridge amidst Martian glaciers

Overview map

Strange meandering ridge in glacier country

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 21, 2023 by the high resolution camera on Mars Reconnaissence Orbiter (MRO). Its focus is the meandering ridge in the center of the picture, which the scientists intentially describe vaguely as a “ridged flow-like feature”.

The elevation difference between the high and low points within the picture is about 500 feet, though most of that slope occurs in the lighter terrain on the right. The darker area where the ridge is located has no clear elevation trend, though there are hints of depressions and rises within it.

The yellow dot on the overview map above marks this location, deep within the chaos terrain dubbed Deuteronilus Mensae, on the western end of the 2,000 long northern mid-latitude strip I dub glacier country, because practially every image from there shows glacial features.

To underline this fact, the red and white dots mark previous cool images from 2020 and 2021, with the first showing an eroded glacier and the second glacial ice sheets.

The mesa to the east of this picture rises more than 6,000 feet to its peak, as indicated by the black dot. This is also the highest point for this entire grouping of mesas. All are surrounded by a single large apron of material, likely a mixture of alluvial fill and ice.

What however caused the narrow ridge in the picture above? Is it ice or bedrock? If ice why is it so different than the glacial material that seems to surround it? If bedrock, it suggests it is instead an ancient inverted channel created when that ridge was a canyon through which ice or water flowed, compacting the canyon floor. When the terrain around it eroded away it was more resistent and became a ridge instead.

I have no answer. The colors suggest the ridge is rock, not ice, but that is not conclusive.

The grand Valles Marineris of Mars

The grand canyon of Mars
Click for original image.

Time for another cool image of the grand canyon of Mars, Valles Marineris. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the floor of this gigantic canyon, where orbital data has detected light-toned materials. From the caption:

Many of the Valles Marineris canyons, called chasmata, have kilometer-high, light-toned layered mounds made up of sulfate materials. Ius Chasma, near the western end of Valles Marineris, is an exception.

The light-toned deposits here are thinner and occur along both the floor and walls, as we see in this HiRISE image. Additionally, the sulfates are mixed with other minerals like clays and hydrated silica. Scientists are trying to use the combination of mineralogy, morphology, and stratigraphy to understand how the deposits formed in Ius Chasma and why they differ from those found elsewhere in Valles Marineris.

The picture however gives no sense of the monumental terrain that surrounds it.
» Read more

Martian lava that buried a crater

Martian lava flow through crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a lava flow that cut through an older 2-mile-wide crater, mostly burying it as it burst through the crater’s southwest and northeast rims. From the caption:

A lava channel extends from the feature and continues 60 kilometers to the northeast, growing deeper along its path. The circular formation is likely an eroded impact crater whose walls have been breached by the lava as it surrounded the rim and then infilled the crater. Alternatively, it could represent the location of a volcanic vent that sourced some of the lavas that formed the channel.

» Read more

Galaxies within galaxies within galaxies

Galaxies within galaxies
Click for original image.

Time another cool galaxy image! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was taken by the Hubble Space Telescope as part of a survey project of galaxies where past supernovae had occurred. From the caption:

The location of this faded supernova was observed as part of a study of multiple hydrogen-rich supernovae, also known as type II supernovae, in order to better understand the environments in which certain types of supernovae take place.

Though the picture’s resolution was reduced to post here, I have also included insets at the full released resolution of three of background galaxies, one of which (on the uppermost right) appears to have a second smaller galaxy either associated with it or is another background galaxy even farther away. Such background galaxies are always seen Hubble images, which starkly tell us that the universe is far vaster than we can imaging, with more stars than we can conceive.

The galaxy featured here is interesting in its own right. Though it appears to be a spiral galaxy, its arms are very indistinct, suggesting that is sits between that of an elliptical galaxy (no arms, just a cloud of stars) and a spiral (with well-defined arms).

Ingenuity completes very short 65th flight

Overview map
Click for interactive map.

Ingenuity yesterday completed a very short 48 second flight that shifted its position only slightly to the west, by about 23 feet. The distance, time, and highest elevation (33 feet) matched the flight plan exactly.

The green dot on the overview map above indicates its present position, with the blue dot marking Perseverance’s location. This particular flight was so short that it actually fits entirely within that green dot. Furthermore, the helicopter’s next flight, scheduled for today as well, is intended to also only reposition the helicopter, but even less so, moving only two feet or so sideways while rising only ten feet.

It appears the engineering team is preparing the helicopter for the upcoming solar conjunction, when the Sun will be between the Earth and Mars and no communications will be possible for several weeks. Such conjunctions occur about every two years, with this one beginning on November 6th and lasting until November 29th. Getting the helicopter in the right spot during that down time will increase the chances for regaining communications afterward. Since Perseverance acts as a relay station, Ingenuity must get placed in a spot where there is a direct line of communications, blocked by no objects or intevening rise in land.

Note that all the Martian rovers and orbiters are preparing for conjunction right now.

Mars geology that only makes sense by digging deeper

Not-so baffling Martian geology
Click for original image.

Today’s cool image is a perfect example of why nothing in science research should ever be taken at face value, without digging a bit deeper. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 5, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

First an important technical point. Though the electronics unit for one of the camera’s color filters is still not working — causing a blank strip down the center of all black & white images, the camera team has gotten around this problem by inserting in that strip other color filter data, thus creating a complete image as you see to the right. This work-around means that MRO’s capabilities, though showing signs of age, will continue almost as good as before.

As for the image itself, when I first looked at it, I was baffled by the striking contrast between the mottled and rough ground in the lower left, and the almost featureless and smooth terrain everywhere else. Why this sudden transition? What could cause it? That inexplicable contrast demanded I post it as a cool image.
» Read more

Lucy discovers second small asteroid orbiting Dinkinesh

Dinkinesh as seen by Lucy

During its November 1, 2023 fly-by of the asteroid Dinkinesh the asteroid probe Lucy surprisingly discovered that the asteroid was actually a binary, with a second smaller asteroid orbiting it.

The picture to the right, cropped, reduced, and sharpened to post here, was taken by Lucy’s camera within a minute of the probe’s closest approach of 270 miles. The second asteroid is partly blocked by Dinkinesh.

In the weeks prior to the spacecraft’s encounter with Dinkinesh, the Lucy team had wondered if Dinkinesh might be a binary system, given how Lucy’s instruments were seeing the asteroid’s brightness changing with time. The first images from the encounter removed all doubt. Dinkinesh is a close binary. From a preliminary analysis of the first available images, the team estimates that the larger body is approximately 0.5 miles (790 m) at its widest, while the smaller is about 0.15 miles (220 m) in size.

The nature of both asteroids appears to lie between a rubble pile (like Bennu) or a solid smooth rock (like Eros), suggesting we are now beginning to see aspects of the overall evolution of asteroids over time.

So far only a few images from this fly-by have been released. It will take a week for the rest of the data from the fly-by to beamed back to Earth. However, these images prove that the prime purpose of this fly-by was successful, proving that Lucy is operating as planned, able to point, manuever, and obtain its data during such a fly-by. When it arrives in the Trojan asteroids in 2027 it will be able to do its prime mission.

A seasonal map of the cloudy parts of Mars

Seasonal map of the cloudy parts of Mars
Click for original image.

Though Mars’ very thin atmosphere (1/thousandth that of Earth) is generally clear, it does have clouds that come and go. A project begun in 2022 using citizen scientists to identify these clouds and the seasons they appear the most, dubbed Cloudspotting on Mars, has now published its first paper, available here.

The graph to the left, Figure 9 in the paper, shows two seasonal Mars maps, one indicating the daytime seasonal frequency of clouds and the other their nightime frequency. From the paper:

The seasonal evolution of all clouds as a function of latitude for both daytime and nighttime are shown in Fig. 9. During the clear season until [mid-summer in the northern hemisphere] … there are several regions where clouds occur frequently: in the equatorial region (annotated as 1), at mid-latitudes (2), in the southern polar region (3), and to a lesser extent in the northern polar region [at the start of summer]. From [late fall to mid-autumn in the north], daytime clouds occur primarily at mid-latitudes, but are observed at nearly all latitudes between 70°S and 60°N (4). At night, there is one broad population from 30°S to 30°N (clouds are more frequent in the equatorial region at night), but [in autumn], clouds occur frequently between 30°N and 50°N as well. [In mid-spring] the number of observed nighttime clouds increases in the southern hemisphere, especially near 50°S. There is a strong decrease in the number of peaks just before [the late northern autumn and the late southern sping] at nearly all latitudes except around 50°S and 20°N at night. [Once northern winter arrives], clouds are observed between about 60°S and 60°N as well as both polar regions, although nighttime clouds between 0°N and 30°N occur relatively less frequently.

The low-latitude clouds during the clear season (1), which are observed more frequently at night, occur at high altitudes, 65–80 km during the day and 55–70 km at night; this is the aphelion equatorial mesospheric cloud population studied in depth by Slipski et al. (2022) and in which previous observations have spectrally confirmed CO2-ice.

Martian seasons

The bracketed words indicating seasons above replace the longitudal numbers the scientists use to indicate the seasons, and are used on these two graphs. The figure to the right shows what the longitude numbers represent in the graphs’ X-axis.

The project continues if any of my readers want to join in.

1 2 3 4 5 6 19