Ispace: Resilience’s failure was due to a hardware issue in laser range finder

In a press conference today, officials of the Japanese startup Ispace explained that the failure of its second lunar lander, Resilience, to land softly on the Moon on June 5, 2025 was due to a hardware issue in its laser range finder that prevented it from providing correct altitude data.

At the same time, they have not yet been able to pin down precisely what caused the failure. It could have been because of unexpected degradation during flight, or possibly a technical fault with the range finder in gathering data at the speeds and altitudes experienced.

The company is forming a task force in partnership with Japan’s space agency JAXA as well as NASA to try to figure out the issue. It is also going to add lidar instrumentation to future missions to provide a backup to the laser range finder. These actions will add about $11 million in additional costs, an amount Ispace says it can absorb.

Ispace is building two more lunar landers, one for NASA in partnership with the American company Draper, and the second for JAXA. It appears both missions are still moving forward.

Two lunar orbiters spot the crash site of Ispace’s Resilience lander

Resilience crash site on the Moon, as seen by Chandrayaan-2

Scientists using both NASA’s Lunar Reconnaissance Orbiter (LRO) and India’s Chandrayaan-2 lunar orbiter have spotted the crash site for the private commercial lunar lander Resilience, built and launched by the Japanese startup Ispace.

The picture to the right was taken by Chandrayaan-2. As noted at the LRO website showing its photo:

The dark smudge (60.4445°N, 355.4120°E, -2431.6 m elevation ) formed as the vehicle excavated and redistributed shallow regolith (soil); the faint bright halo resulted from low-angle regolith particles scouring the delicate surface.

The lander attempted a soft landing on June 5, 2025, but because its laser rangefinder was unable to gather good data as to its elevation, it did not decelerate properly and was going too fast when its engines tried for a soft landing. It instead crashed.

Ispace confirms that its Resilience lunar lander has failed, apparently crashing on the Moon

According to an update issued several hours after the planned landing, the Japanese lunar lander startup confirmed that its Resilience lunar lander apparently crashed in its attempt to soft land on the Moon.

Ispace engineers at the HAKUTO-R Mission Control Center in Nihonbashi, Tokyo, transmitted commands to execute the landing sequence at 3:13 a.m. on June 6, 2025. The RESILIENCE lander then began the descent phase. The lander descended from an altitude of approximately 100 km to approximately 20 km, and then successfully fired its main engine as planned to begin deceleration. While the lander’s attitude was confirmed to be nearly vertical, telemetry was lost thereafter, and no data indicating a successful landing was received, even after the scheduled landing time had passed.

Based on the currently available data, the Mission Control Center has been able to confirm the following: The laser rangefinder used to measure the distance to the lunar surface experienced delays in obtaining valid measurement values. As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing. Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface.

After communication with the lander was lost, a command was sent to reboot the lander, but communication was unable to be re-established.

This explanation fits with the very high velocity numbers seen as the spacecraft approached the surface, much higher than intended.

Ispace has now attempted to land on the Moon twice, with both landers crashing upon approach. In this sense its record is not quite as good as the American startup Intuitive Machines, which had two landers touch down but immediately tip over, causing both to fail.

Ispace presently has three contracts to build landers with NASA, JAXA (Japan’s space agency), and the European Space Agency. The American lander is being built in partnership with the company Draper. Whether this second failure today will impact any of those contracts is uncertain at this time.

Landing of Ispace’s Resilience lander uncertain

Resilence landing

The landing of Ispace’s Resilience lander on the Moon at present appears uncertain, and could be a failure. Though the announcers of the live stream had warned beforehand that it might take awhile after the planned touchdown time to confirm a successful landing, the circumstances just before landing did not appear to go as expected.

At T-1:45 minutes, with the spacecraft at an altitude of 32 feet and still moving at a speed of 116 miles per minute, all telemetry disappeared from the broadcast. Mission controllers did then indicate the spacecraft was “pitching up”, which means it was re-orienting itself for landing. At that point however no further updates were provided. Moments later we could see the engineer in mission control in the lower left of the screen capture to the right, obviously disturbed by something.

In ending the live stream a few minutes later, with no further information, the announcers added that a full report will be made during a press conference later today.

Watch the landing attempt of Ispace’s Resilience lunar lander

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

I have embedded the live stream below of the landing of the Japanese startup Ispace’s Resilience lunar lander, presently scheduled to occur at 3:17 pm (Eastern) today (June 6, 2025 in Japan).

The live stream goes live at about 2:00 pm (Eastern).

Resilience will attempt to land on the near side of the Moon at 60.5 degrees north latitude and 4.6 degrees west longitude, in the region dubbed Mare Frigoris (Latin for “the Sea of Cold”), as shown on the map to the right. That map also shows a number of other landings on this quadrant of the Moon, including Ispace’s previous failed attempt with its first lander, Hakuto-R1, in Atlas Crater in 2023.

For Ispace, today’s landing is critical for its future. It has contracts for future three landers with NASA, with Japan’s space agency JAXA, and with the European Space Agency, but a failure today could impact whether those contracts proceed to completion.
» Read more

Japanese lunar lander startup Ispace signs deal to build lander for ESA

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

The Japanese lunar lander startup Ispace — about to attempt its second unmanned lunar landing — has now signed a $3 millionj contract with the European Space Agency (ESA) to begin design and construction of its proposed Magpie lander.

The agreement comes in the context of the Small Missions for Exploration initiative launched by ESA. This initiative called for innovative and short-term mission ideas for lunar exploration. ispace’s MAGPIE concept was selected and awarded a pre-phase A contract on Dec. 12, 2024. Under the Phase 1 extension agreement, ispace-EUROPE will collaborate with ESA on the implementation of the lunar exploration mission. In aggregate, the value of the contracts for the two phases is €2,695,000 (approximately ¥437 million JPY).

The company already has contracts for future landers with both NASA and Japan’s space agency JAXA. It appears these space agencies consider the company’s engineering to be acceptable, even though its only attempt to land on the Moon, Hakuto-R1, crashed in 2023 when its software shut the engines down prematurely, three kilometers above the surface.

Ispace’s second lander, Resilience, is presently in lunar orbit and is now targeting a landing attempt tomorrow, June 5, 2025, at 3:17 pm (Eastern). The map to the right shows the landing zone, in Mare Frigoris in the high northern latitudes of the near side of the Moon.

This contract by ESA also illustrates Europea’s increasing shift to the capitalism model. Rather than design and build the lander itself, ESA is buying this product from the private sector. It will likely get what wants sooner and for far less money.

Ispace borrows $35 million

Ispace landing map
Resilience’s landing zone in Mare Frigoris

The Japanese lunar lander startup Ispace announced last week that it has obtained a new bank loan totaling $35 million from the Japanese bank Mizuho to help pay its ongoing expenses as its Resilience lunar lander attempts the company’s second try at soft landing on the Moon.

The loan is intended to secure working capital for development of mission and other related expenses. Through this financing, ispace intends to strengthen the company’s liquidity position and stabilize its financial foundation, thereby enabling agile management decisions.

In other words, the company had started to run short of cash, and needed this loan to keep operating. It had previously gotten a government loan of almost $6 million, but that did not have to be paid back for ten years. Back in 2018 it raised $90 million in investment capital, followed by an additional $53 million in 2024.

This loan suggests that Ispace might be in serious financial trouble if Resilience fails to soft land on June 5, 2025, as presently planned. The company already has two future lander contracts, one with NASA and one with Japan’s space agency JAXA, but a second failure now might cause those agencies to have second thoughts.

Ispace’s Resilience lander successfully enters lunar orbit

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

Ispace today announced that its lunar lander Resilience, launched in January by SpaceX, has now been successfully inserted into lunar orbit,

Ispace engineers performed the injection maneuver from the Mission Control Center in Nihonbashi, Tokyo, Japan in accordance with the mission operation plan. The orbital maneuver required a main thruster burn lasting approximately 9 minutes, the longest to date during Mission 2. RESILIENCE is now maintaining a stable attitude in its planned orbit above the lunar surface. Mission operations specialists are now preparing for final orbit maneuvers after reaffirming Ispace’s ability to deliver spacecraft and payloads into lunar orbit. A lunar landing is scheduled for no earlier than June 5, 2025 (UTC) (June 6, 2025, JST).

If all goes right, Resilience will touch down in Mare Frigoris in the northern latitudes of the Moon’s near side, as shown on the map to the right.

This is Ispace’s second attempt to soft land on the Moon. Its first attempt, Hakuto-R1, got within three kilometers of the surface in Atlas Crater (also shown on the map), but then its software mistook its altitude, thinking it was only a few feet above the surface and shut down the engines prematurely, causing it to crash.

This second landing is critical for the company’s future. It has contracts for future landers from both NASA and Japan, but a failure now might cause both governments to reconsider those deals.

Ispace’s Resilience lunar lander completes all maneuvers prior to entering lunar orbit

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

The Japanese startup Ispace today announced that its Resilience lunar lander — launched on a Falcon 9 to the Moon in January — has now completed all the orbital maneuvers required to send it on a path to enter lunar orbit in early May.

Ispace engineers performed the final orbit maneuver from the Mission Control Center in Nihonbashi, Tokyo, Japan in accordance with the mission operation plan. In total, the RESILIENCE lunar lander has completed 8 orbit control maneuvers. RESILIENCE is now maintaining a stable attitude in its planned orbit and mission operations specialists are now preparing for the Mission 2 milestone Success 7, “Entering Lunar Orbit.” The RESILIENCE lander is expected to enter lunar orbit on May 7, 2025.

The map to the right shows the landing zone, near the top of Moon’s near hemisphere in the region of Figoris Mare. The landing will occur a week or so after orbital insertion, after the company’s engineers have fully assessed the situation.

The rover carries eight commercial payloads, including its own Tenacious mini-rover, as well as a “water electrolyzer” from a Japanese company, a “food production experiment” from another company, and a “deep space radiation probe” from the National Central University of Taiwan.

Resilience’s main purpose however remains to prove the company can build and successfully soft land on the Moon. Its only previous attempt, Hakuto-R1, crashed in Atlas Crater. Despite that failure Ispace has won a contract each from NASA and Japan to launch additional lunar landers, so a success here is critical for the company’s future.

Hat tip BtB’s stringer Jay.

Ispace targets June 6, 2025 for the Moon landing its Resilience commercial lander

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

The Japanese startup Ispace announced today that its Resilience commercial lunar lander will attempt its touch down inside the Mare Frigoris region on the Moon on June 6, 2025, as shown on the map to the right.

Should conditions change, there are three alternative landing sites that are being considered with different landing dates and times for each. A decision about landing will be made in advance, but the window for landing is open from June 6 through June 8, 2025.

The company also reports that the spacecraft is healthy and operating exactly as expected.

Though Resilience was launched on the same Falcon 9 rocket that launched Firefly’s Blue Ghost lunar lander, it has taken a longer route to the Moon, which is why its landing will take place three months later.

Ispace’s Resilience lunar lander completes lunar flyby in preparation for entering lunar orbit

The Resilience lunar lander, built by the Japanese startup Ispace and launched in January on the same Falcon 9 rocket as Firefly’s Blue Ghost lunar lander, has now completed its closest flyby of the Moon as it prepares to enter lunar orbit sometimes in early May.

The spacecraft is actually still in Earth orbit, but with a apogee that is almost 700,000 miles out, or almost three times the distance of the Moon’s orbit. Once Ispace’s engineers have gotten a precise track of this orbit they will then determine the exact parameters of the engine burn in May that will place Resilience in lunar orbit.

This is Ispace’s second attempt to place a lander on the Moon. The first, Hakuto-R1, came close, but crashed in Atlas Crater (see the map in my previous post) when, at an altitude of several kilometers, its software thought it was only a few feet above the surface and shut the engines off.

Most of the instruments on Resilience are either symbolic or engineering experiments to observe the lander’s operations. It is however carrying a small rover, dubbed Tenacious, which will attempt to travel on the surface.

Ispace posts first picture taken by its Resilience lunar lander

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

The Japanese startup Ispace on January 29, 2025 released the first picture taken by its Resilience lunar lander, a series of images of Earth.

More important, the company reported that the spacecraft is “in excellent health.”

Though launched on the same rocket with Firefly’s Blue Ghost lunar lander, Resilience is taking a longer route to the Moon. Blue Ghost plans to land on the Moon in about six weeks. Resilience won’t get there for about four more months. Both are using the same technique, slowly over time raising the spacecraft’s Earth orbit until its high point enters the Moon gravitational sphere of influence, where each will transfer to lunar orbit. This method saves weight and fuel, as it requires a smaller rocket engine to make the trip. That Resilience is taking longer is simply because it uses an even smaller engine that can only raise that orbit in smaller increments.

SpaceX successfully launches two commercial lunar landers

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

SpaceX tonight successfully launched two different private commercial lunar landers, its Falcon 9 rocket lifting off from the Kennedy Space Center in Florida.

The prime payload was Firefly’s Blue Ghost lunar lander, flying ten science payloads to the Moon for NASA. It will take about six weeks to get to lunar orbit. The second payload was Resilience or Hakuto-R2, built by the Japanese startup Ispace on that company’s second attempt to land on the Moon. It is taking a longer route to the Moon, 4 to 5 months. The map to the right shows the landing locations for both landers. It also shows the first landing zone for Ispace’s first lander, Hakuto-R1, inside Atlas Crater. In that case the software misread the spacecraft’s altitude. It was still three kilometers above the ground when that software thought it was just off the surface and shut down its engines. The spacecraft thus crashed.

For context, the map also shows the landing sites of three Apollo missions.

Both spacecraft were correctly deployed into their planned orbits.

The first stage successfully completed its fifth flight, landing on a drone ship in the Atlantic.

The 2025 launch race:

8 SpaceX
2 China

Right now SpaceX’s launch pace exceeds once every two days. If it can even come close to maintaining that pace, it will easily match its goal of 180 launches in 2025.

Live stream of SpaceX launch of two lunar landers

I have embedded below the live stream of tonight’s launch by SpaceX of its Falcon 9 rocket from Kennedy, carrying a dual lunar lander payload, Firefly’s Blue Ghost and Ispace’s Resilience, scheduled for 1:11 am (Eastern).

Blue Ghost will take 45 days to reach the Moon, when it will land in Mare Crisium on the eastern edge of the Moon’s visible hemisphere.

Resilience will take a much longer route, not arriving at the Moon for four to five months. It will then attempt to land in Mare Frigoris in the high northern latitudes of the visible hemisphere. If successful it will also deploy its own mini-rover dubbed Tenacious.
» Read more

Ispace awarded $5.83 million loan from Japanese government

Ispace landing map

The planetary lander startup Ispace today announced that it has been awarded a $5.83 million loan from the Japan Finance Corporation, a government corporation designed to issue loans to encourage Japanese businesses.

The money will be issued this month, and Ispace will have ten years to pay it back. Depending on whether the company is profitable or not, the interest rate will be either 0.5% or 4.15%.

Ispace’s one lunar landing attempt so far, Hakuto-R1, was a failure when its software thought it was close to the ground at three miles altitude and shut off its engines. The company however is going to try again, with the launch of its second lander, dubbed Resilience, scheduled for a January 2025 launch. It will also carry the company’s own Tenacious micro-rover, and will hopefully land as shown in the map to the right, in the north of the Moon’s near side.

Ispace signs agreement with lunar mining startup

Landing sites on Moon

The Japanese lunar lander startup Ispace has now signed an agreement with a lunar mining startup dubbed Magna Petra to transport the latter company’s helium-3 mining equipment to the Moon.

In a memo of understanding, ispace and Magna Petra have agreed to collaborate to utilize the moon’s resources for economic benefits to life on Earth, the companies announced Tuesday, Dec. 10. Through “non-destructive, sustainable harvesting,” according to a joint statement, Magna Petra plans to one day extract “commercial quantities” of helium-3 isotopes from regolith on the lunar surface for delivery and distribution back on Earth, where the resource is facing an extreme supply shortage.

Ispace meanwhile still has to prove it can put a lander on the Moon. Its first attempt, Hakuto-R1, almost succeeded, but crashed in April 2023 when its software thought it was just above the ground and shut down its engines when it was still three miles high. The company’s second attempt, dubbed Resilience and carrying a rover dubbed Tenacious, is scheduled for launch in January 2025. The landing site is shown on the map to the right, within Mare Frigoris in the northern part of the Moon’s nearside hemisphere.

Ispace targeting a December launch for its second attempt to softland on the Moon

Landing zone for Resilience lander

At a press conference yesterday officials of the Japanese company Ispace announced that they are now targeting a December 2024 launch of their second Hakuto-R lunar lander, dubbed “Resilience”, with the landing site located in the high mid-latitudes of the near-side of the Moon.

The map to the right indicates that location, inside Mare Frigoris. Atlas Crater is where Ispace attempted but failed to soft land its first lunar lander, Hakuto-R1, in April 2023.

This new lander will be launched on a Falcon 9 rocket. It carries six commercial payloads. It also appears the company decided to go for an easier landing site on this second mission. Rather than try to land inside a crater, it is targeting a very large and flat mare region, thus reducing the challenges presented to its autonomous software.

Ispace already has contracts both with NASA ($55 million) and Japan’s JAXA space agency ($80 million) for two more future landers, so a successful landing this time is critical to the company’s future.

Launch failure for Chinese pseudo-company Ispace

Based on a very terse report in China’s state-run press today, there was a launch failure today for one of China’s pseudo-companies, launched from the Jiuquan spaceport in the northwest of China.

Further research suggests the failure was on Ispace’s Hyperbola-1 solid-fueled rocket. If so, this would be that rocket’s fourth failure out of seven launches.

No other information about the failure has so far been released.

Ispace’s Resilience lunar lander completes thermal vacuum testing

The Japanese startup Ispace announced late last week that its second lunar lander, formerly names Hakuto-R2 and now dubbed Resilience, has successfully completed thermal vacuum testing and is on schedule for a launch before the end of this year.

The testing was completed at the Japan Aerospace Exploration Agency (JAXA) Tsukuba Space Center in Tsukuba, Japan, where the agency operates a large testing facility. The flight model was assembled at the facility and all payloads or testing models were integrated into the lunar lander before testing began. All test success criteria were met; ispace engineers are now reviewing the detailed data that RESILIENCE collected during the ten-day testing regime. The results will allow engineers to optimize the spacecraft thermally for spaceflight as well as improve flight operation procedures.

Thermal vacuum testing is conducted in a large chamber that allows the lunar lander to experience conditions similar to what it will face during its journey through outer space including extreme temperatures in a vacuum environment. Initial test results indicated successful operation of power systems, guidance, navigation and control (GNC) equipment, radio communications, and thermal control of the lander while simulating an actual spaceflight. During testing in the chamber, ispace operators utillized the lander’s onboard radio to assess connections, send commands to, and receive telemetry from the lander, further simulating actual flight operations.

This lander will also carry a mini-rover, and will be launched by a Falcon 9 rocket. The company’s press materials don’t name a location for the lunar landing spot, though one must have been chosen. I suspect, as this mission is a precursor to Ispace’s first NASA lunar landing mission set for 2026, it will be sent to the same location as Ispace’s first Hakuto-R1 test mission, which got to within three miles but then crashed because sensors thought it was just above the surface and shut off the engines prematurely.

Ispace gets a new payload for its first NASA lunar landing mission

Capitalism in space: The Japanese company Ispace has won a contract with the European company Control Data Systems (CDS) to place CDS’s precise localization instrument on Ispace’s APEX lunar lander, its first NASA mission.

CDS’s technology, which combines precision localization with telecommunications, uses Ultra-Wideband for determining precise positions and was developed specifically for space applications with support from the European Space Agency. The lack of a GPS-like system on the Moon, makes the technology ground-breaking for future applications related to lunar exploration.

The agreement … also represents the first Romanian payload to be delivered to the lunar surface. The technology will be integrated into the APEX 1.0 lunar lander as part of ispace technologies U.S. (ispace-U.S.) Mission 3, currently scheduled for 2026. A lunar rover will transport the CDS equipment on the surface to test the localization technology using an antenna that will remain on the APEX 1.0 lander.

Though Ispace is based in Japan, it has divisions in both the U.S. and Europe, which is allowing it to sign contracts with NASA and companies in both locations.

Ispace, which built the lunar lander Hakuto-R1, has raised $53 million in investment capital

The lunar lander company Ispace, which built Hakuto-R1, the lunar lander that crashed on the Moon last year, announced yesterday that it has raised $53 million in investment capital from a sale of its publicly traded stock.

The Tokyo-based company, which went public on the Tokyo Stock Exchange nearly a year ago, announced March 28 that it completed a sale of 10.25 million shares of stock, raising approximately 8.1 billion yen ($53.5 million). The shares were sold to institutional investors outside of Japan.

Most of the funding — about 7.1 billion yen — will go towards various elements of what the company calls Mission 3, a lander being developed by its American subsidiary, ispace U.S., for Draper. That APEX 1.0 lander will fly a mission in 2026 for NASA’s Commercial Lunar Payload Services (CLPS) program, going to the far side of the moon.

Before APEX flies the company has a second Hakuto-R-type mission planned, dubbed Resilience and targeting a launch late this year.

Chinese pseudo-company launches satellite

The Chinese pseudo-company Ispace today launched what is only described as a “prototype recoverable experiment spacecraft” by another Chinese pseudo-company, its Hyperbola-1 rocket lifting off from the Jiuquan spaceport in the northwest of China.

China’s state-run press now routinely makes no mention of these pseudo-companies. In the past China would tout them in an effort to make the rest of the world believe, falsely, that it had its own competitive and growing space industry. Now it appears the Xi government has decided it doesn’t like the growing and somewhat independent success of these companies, and is making it clear to all that, in the end, everything they do belongs to the government.

The leaders in the 2023 launch race:

91 SpaceX
61 China
17 Russia
8 Rocket Lab
7 India

American private enterprise still leads China in successful launches 104 to 61, and the entire world combined 104 to 96. SpaceX now trails the rest of the world combined (excluding American companies) 91 to 96.

Japan awards Ispace $80 million to develop larger lunar lander

The Japanese government, not its space agency JAXA, today announced it has awarded the commercial company Ispace an $80 million grant to develop a larger lunar lander, following its failed attempt earlier this year to land its first Hakuto-R1 lander on the Moon.

Japan will provide a subsidy of up to 12 billion yen ($80 million) to moon exploration startup ispace (9348.T) as part of a grant programme for innovative ventures, industry minister Yasutoshi Nishimura said on Friday.

The new lander is targeting a 2027 launch, and according to the company’s own statement [pdf] will replace the Hakuto-R lander being used on its first two lunar missions, as well as the Apex lander the American division of Ispace is now building for NASA. It also appears that the contract is fixed price, and will only be paid out when the company achieves actual milestones of development.

In other words, the Japanese government is doing what NASA is now doing, moving away from a government model, where its space agency JAXA builds and controls everything, to a capitalism model, where it buys what it needs from the private sector. That JAXA did not issue this award demonstrates this transition, in that until now all such space contracts were through that agency solely.

Ispace wins $55 million NASA contract for lunar landing mission

The Japanese company Ispace, which is also establishing operations in the U.S., has won a $55 million NASA contract to send a lunar landing plus communications relay satellites to the Moon in 2026.

Ispace’s Hakuto-R1 lander attempted a landing on the Moon in April, but crashed. The company has a second Hakuto-R mission presently targeting launch next year. The NASA contract would the company’s third, which will be built in its new U.S. facility and be called Apex-1.

In today’s briefing, Ispace representatives announced that the primary customer for its upcoming Mission 3 is NASA, which has selected the company as part of its Commercial Lunar Payload Services program (CLPS). Ispace stated during the briefing that it has signed a $55 million contract with NASA for Mission 3 in order to land near the lunar south pole carrying approximately 210 pounds (95 kg) of scientific payloads.

But that’s not all the mission will do. On its way to the lunar surface, Mission 3 will deliver relay satellites that will remain in orbit around the moon to serve as communication relays.

Though it will not be surprising if these launch dates slip, Ispace is in a strong position to succeed, considering it is presently the only private company to launch a Moon lander, and got very close to putting it down on the lunar surface successfully.

Ispace publishes results of its investigation into Hakuto-R1 lunar landing failure

Hakuto-R1 impact site, before and after
Before and after images of Hakuto-RI, taken by Lunar Reconnaissance
Orbiter (LRO). Click for original blink image.

Ispace today published the results of its investigation into the failure of its Hakuto-R1 lunar landed to touch down on the moon successfully, stating that the cause was a software error which thought the spacecraft was closer to the ground than it was.

At the end of the planned landing sequence, it approached the lunar surface at a speed of less than 1 m/s. The operation was confirmed to have been in accordance with expectations until about 1:43 a.m., which was the scheduled landing time.

During the period of descent, an unexpected behavior occurred with the lander’s altitude measurement. While the lander estimated its own altitude to be zero, or on the lunar surface, it was later determined to be at an altitude of approximately 5 kms above the lunar surface. After reaching the scheduled landing time, the lander continued to descend at a low speed until the propulsion system ran out of fuel. At that time, the controlled descent of the lander ceased, and it is believed to have free-fallen to the Moon’s surface.

The company believes the software got confused when the spacecraft crossed over the rim of Atlas Crater.

The resulting crash produced the debris seen by LRO to the right.

Lunar Reconnaissance Orbiter spots Hakuto-R1 impact debris on Moon

Hakuto-R1 impact site, before and after
Click for original blink image.

NASA’s Lunar Reconnaissance Orbiter (LRO), scientists have spotted what they think is the impact debris produced when Ispace’s private lunar lander Hakuto-R1 crashed on the Moon on April 25, 2023.

To the right are two LRO images, the first at the top taken prior to Hakuto-R1’s landing attempt. The second at the bottom was acquired by LRO on April 26, 2023, the day after that attempt. The lettered arrows indicate four spots where the scientists identified changes between the two pictures. From the caption:

Arrow A points to a prominent surface change with higher reflectance in the upper left and lower reflectance in the lower right (opposite of nearby surface rocks along the right side of the frame). Arrows B-D point to other changes around the impact site.

According to the LRO science team, these changes suggest different pieces of debris, though it will take more analysis and more images under different lighting conditions to determine more precisely what they have found.

The presence however of four pieces strongly suggests that Hakuto-R1 hit the ground hard enough to break apart. Based on the initial data received during landing, it was thought the spacecraft had touched down softly but then was damaged by some unforeseen obstacle on the ground, such as a large boulder. The LRO image suggests instead that it did not touch down softly at all.

Watching live the landing of Hakuto-R1 on the Moon

I have embedded below the live stream of Hakuto-R1’s landing on the Moon, scheduled for today. The original landing time was targeting “approximately” 8:40 (Pacific), but it is now past that. That time might actually have indicated the start of the live stream. The lander is presently out of contact, on the far side of the Moon.

The landing is targeting the floor of Atlas Crater, located in the northeast quadrant of the visible hemisphere of the Moon.

» Read more

Hakuto-R1 now scheduled to land on Moon on April 25th

Lunar map showing Hakuto-R1's landing spot
Hakuto-R1’s planned landing site is in Atlas Crater.

The private company Ispace yesterday announced that their Hakuto-R1 lunar lander, presently in orbit around the Moon, will attempt a landing on April 25, 2023, landing in Atlas Crater.

At approximately 15:40 on April 25, 2023, (UTC), the lander is scheduled to begin the landing sequence from the 100 km altitude orbit. During the sequence, the lander will perform a braking burn, firing its main propulsion system to decelerate from orbit. Utilizing a series of pre-set commands, the lander will adjust its attitude and reduce velocity in order to make a soft landing on the lunar surface. The process will take approximately one hour.

Should conditions change, there are three alternative landing sites and depending on the site, the landing date may change. Alternative landing dates, depending on the operational status, are April 26, May 1, and May 3, 2023.

The lander carries several commercial payloads, including the United Arab Emirates (UAE) Rashid rover. Ispace says the landing will be publicly live streamed, with more details to follow.

The company has from the beginning been treating this entire mission as an engineering test, with ten major goals, all related to proving out the lander’s systems. It has now completed eight of those goals, with a successful landing and successful operations on the surface the last challenges. If Hakuto-R1 succeeds, Ispace will become the first private company to complete a privately funded planetary mission to the Moon.

Furthermore, the company is already planning its second lunar landing mission, Hakuto-R2 in 2024, and a third more ambitious lunar mission for NASA, partnering with the American company Draper.

Hakuto-R1 snaps first picture of Moon from lunar orbit

Hakuto-R1's first released image from lunar orbit
Click for original image.

The science team for Ispace’s Hakuto-R1 privately-built lunar orbiter/lander earlier this week released the spacecraft’s first picture of the Moon since entering lunar orbit on March 20, 2023.

That image is to the right, cropped and reduced to post here. The photo resolution is quite good. It also demonstrates that the spacecraft’s attitude control systems for pointing the camera are working correctly.

Launched on December 11, 2022 by a Falcon 9 rocket, Hakuto-R1 will land in Atlas Crater on the northeast quadrant of the Moon’s visible hemisphere sometime in April, making it the first successful private commercial planetary lander to reach another world. If successful, it will then release the United Arab Emirates Rashid rover, that nation’s first planetary lander but its second planetary mission, following the Mars orbiter, Al-Amal, now circling Mars.

Hakuto-R1 enters lunar orbit

Lunar map showing Hakuto-R1's landing spot
Hakuto-R1’s planned landing site is in Atlas Crater.

The lunar lander Hakuto-R1, privately-built by the Japanese company Ispace, has now successfully entered lunar orbit in anticipation of its landing sometime next month.

Tokyo-based ispace said that its HAKUTO-R Mission 1 lander entered orbit at 9:24 p.m. Eastern March 20 after a burn by its main engine lasting several minutes. The company did not disclose the parameters of the orbit but said that the maneuver was a success.

…Entering orbit is the seventh of 10 milestones ispace set for the mission that started with launch preparations. The final three milestones are completing “orbital control maneuvers,” the landing itself and going into a steady state of activities after landing.

The spacecraft carries several payloads, the most significant of which is the United Arab Emirates Rashid rover.

If Hakuto-R1 completes its 10 milestones successfully, it will lay the groundwork for Ispace’s second Hakuto-R mission to the Moon in 2024, and an even larger lander on a third mission to follow, this time built in partnership with the American company Draper and carrying NASA payloads.

1 2