Lightning on Jupiter

Lightning on Jupiter
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on December 30, 2020 by Juno during its 31st close fly-by of Jupiter, and was enhanced and processed by citizen-scientist Kevin Gill.

In this view of a vortex near Jupiter’s north pole, NASA’s Juno mission observed the glow from a bolt of lightning. On Earth, lightning bolts originate from water clouds, and happen most frequently near the equator, while on Jupiter lightning likely also occurs in clouds containing an ammonia-water solution, and can be seen most often near the poles.

Juno was about 20,000 miles above Jupiter’s clouds when it took this picture, located at about 78 degrees north latitude.

The grooved surface of Ganymede

The grooves of Ganymede
Click for original image.

Cool image time! The picture to the right, reduced to post here, was taken on June 7, 2021 when the Jupiter orbiter Juno did a close flyby of the moon Ganymede, taking four pictures.

Citizen scientists Gerald Eichstädt and Thomas Thomopoulos have now reprocessed parts of those images to bring out the details more clearly (the other new versions available here, and here).

I have chosen to highlight the picture to the right however because it so clearly shows the puzzling grooves that cover much of Ganymede’s surface. While these parallel grooves in many ways mimic the grooves often seen on top of valley glaciers on Earth and Mars, on Ganymede they do not follow any valley floor. Instead, they form patches of parallel grooves that travel in completely different directions, depending on the patch. At the moment their origin is not understood.

These grooves are one of the mysteries that Europe’s Juice probe will attempt to solve when it arrives in orbit around Jupiter in 2031.

Engineers free stuck radar antenna on Juice probe to Jupiter’s big moons

Engineers have successfully freed the 52-foot wide radar antenna on the Juice probe to Jupiter, shaking it enough to release a pin that was blocking deployment.

The pin was freed by employing “back-to-back jolts”. Imagine when you roll your car back and forth to get it freed from mud or snow. It appears this is what they did with the pin.

Juice will arrive in Jupiter orbit in 2031, where it will make numerous fly-bys of Europa, Calisto, and Ganymede, and then settle into an orbit around Ganymede alone. The radar antenna was essential for probing the ice content of these worlds, below the surface.

Hat tip to reader Mike Nelson.

Jupiter’s clouds in 3D

Jupiter's clouds in 3D
Click for original image.

Another cool image! The picture to the right, cropped and reduced to post here, was created by a team of citizen scientists from a raw Juno image during its 40th close fly-by of Jupiter. From the caption:

Visual interpretation of relief (exaggerated) on Jupiter based on depth estimation from a single image

2D process: Enhanced RGB, enlargement and crop of image taken on 2022-02-25 02:21 UT – perijove 40 – Junocam

Process on 3d image : not based on a DTM, but a visual interpretation of the surface by depth estimation from a single image

The white box on the global image on the upper left marks the approximate area coverd by the oblique 3D picture. Though the vertical relief is greatly exaggerated as well as simulated from a flat image, it provides us a nice sense of the turbulent nature of Jupiter’s more active bands. The larger structures in the colored band appear to act like giant waves in a river rapids. And for reasons not yet understood, the more active areas of that upper atmosphere is divided into bands determined by latitude.

Radar antenna on Europe’s JUICE probe to Jupiter stuck

European Space Agency officials revealed yesterday that the 52-foot radar antenna on its JUICE probe to Jupiter has failed to deploy as planned, and that they are attempting to shake what they think is a small pin free that is in the way.

Engineers suspect a tiny pin may be protruding. Flight controllers in Germany plan to fire the spacecraft’s engine in hopes of shaking the pin loose. If that doesn’t work, they said they have plenty of time to solve the problem.

Juice, short for Jupiter Icy Moons Explorer, won’t reach the giant planet until 2031. It’s taking a roundabout path to get there, including gravity-assist flybys of Earth and our moon, and Venus.

The radar antenna is needed to peer beneath the icy crust of three Jupiter moons suspected of harboring underground oceans and possibly life, a major goal of the nearly $1.8 billion mission. Its targets include Callisto, Europa and Ganymede, the largest moon in the solar system.

If this antenna cannot be freed, it will prevent JUICE from doing one of its prime missions.

Arianespace launches JUICE mission to Jupiter

Arianespace early today used its Ariane-5 rocket, on its next-to-last launch, to send the European Space Agency’s (ESA) JUICE mission on its way to Jupiter to study its large moons.

It will take eight years for JUICE to get to Jupiter, using flybys of the Earth, Moon, and Venus along the way. This journey might also include a flyby of an asteroid, depending on orbital mechanics and the spacecraft’s condition.

Once at Jupiter it will, from ’31 to ’34, do thirty-five flybys of the Ganymede, Callisto, and Europa, and then enter orbit around Ganymede for most of 2035, before being sent to crash onto the planet to end its mission.

Ariane-5 meanwhile has one more launch, in June. After this Arianespace will not at present have an active large rocket, as its Ariane-6 replacement is not yet flying, its maiden flight presently scheduled for the fourth quarter of this year.

This was also Europe’s first launch in 2023, so it does not get listed on the leader board. The leaders of the 2023 launch race are as follows:

23 SpaceX (with a launch scheduled for tonight)
15 China (with a launch scheduled for tomorrow)
6 Russia
3 Rocket Lab

American private enterprise still leads China 26 to 15, but is now tied with the entire world combined 26 all.

Juno captures close-up images of Jupiter’s moon Io

Io as seen by Juno

On March 1, 2023 the Jupiter orbiter Juno passed within 33,000 miles of the gas giant’s moon Io, getting its first close-up images.

Several citizen scientists have processed those images. The photo to the right, cropped and reduced to post here, was created by Andrew R Brown. This particular picture was one of five taken by Juno during the fly-by. Jason Perry processed all five here, with this caption:

Most of the dark spots seen across Io’s surface are the result of volcanic eruptions. These include East Girru, a dark spot that was not seen the last time Io was seen at this resolution during the New Horizons encounter with Jupiter in February 2007. East Girru was undergoing a major eruption at the time but hadn’t had time to produce a new lava flow before the end of the week-long encounter. This small flow field, measuring 3,200 square kilometers (1,390 square miles) in size, may have also been reactivated during an eruption in October 2021, as seen by Juno JIRAM.

Another apparent surface change is at Chors Patera, which has undergone a significant reddening since Galileo last observed it in October 2001. Reddish materials on Io are indicative of the presence of short-chain sulfur and are often associated with high-temperature, silicate volcanism. Additional dark spots near the terminator, the boundary between Io’s day and night sides, are the shadows of tall mountains. The dark spot at middle right in the upper right image may be due a mountain 5500 meters (18,000 feet) tall.

The smallest object resolved in this image is about 22 miles across.

Astronomers discover twelve more Jupiter moons

In reviewing ground-based data from 2021 and 2022, astronomers have discovered another twelve Jupiter moons, bringing that planet’s total moon population to 92.

All of the newly discovered moons are small and far out, taking more than 340 days to orbit Jupiter. Nine of the 12 are among the 71 outermost Jovian moons, whose orbits are more than 550 days. Jupiter probably captured these moons, as evidenced by their retrograde orbits, opposite in direction to the inner moons. Only five of all the retrograde moons are larger than 8 kilometers (5 miles); Sheppard says the smaller moons probably formed when collisions fragmented larger objects.

One newly discovered moon, dubbed Valetudo, is about 3,000 feet across and orbits in a retrograde orbit that crosses the orbits of several other moons that orbit in the opposite direction. As the article notes, “This highly unstable situation is likely to lead to head-on collisions that would shatter one or both objects.”

Juno’s camera experiences temperature problem

Because of an unexpected rise in its temperature, Juno’s camera was unable to take its full schedule of planned images during its January 22, 2023 close approach of Jupiter.

The JunoCam imager aboard NASA’s Juno spacecraft did not acquire all planned images during the orbiter’s most recent flyby of Jupiter on Jan. 22. Data received from the spacecraft indicates that the camera experienced an issue similar to one that occurred on its previous close pass of the gas giant last month, when the team saw an anomalous temperature rise after the camera was powered on in preparation for the flyby.

However, on this new occasion the issue persisted for a longer period of time (23 hours compared to 36 minutes during the December close pass), leaving the first 214 JunoCam images planned for the flyby unusable. As with the previous occurrence, once the anomaly that caused the temperature rise cleared, the camera returned to normal operation and the remaining 44 images were of good quality and usable.

Engineers are analyzing the issue to try to determine its cause, as well as a fix. The camera at this moment appears to be operating properly, with the next close fly-by occurring on March 1, 2023.

Jupiter and two of its Moons, as seen by Cassini during 2018 fly-by

Cool video time! Back in December 2000 the spacecraft Cassini made a fly-by of Jupiter on its way to Saturn, which it then orbited from 2004 to 2017. In 2018 JPL scientist Kevin Gil took the images from that flyby to create a short movie, first showing two of Jupiter’s moons, Io and Europa, as they drifted above the Great Red Spot.

Then, for the second half of the movie Gil used Cassini images taken when in orbit around Saturn to show the moon Titan moving across the rings of Saturn.

I have embedded this short video below. If I had posted this back in 2018, I don’t remember. No matter. It is amazing enough to watch again.

Hat tip BtB’s stringer Jay.
» Read more

Animation of Jupiter’s clouds

Cool video time! Using a photo taken by Juno during its 2018 fly-by of Jupiter, citizen scientist Thomas Thomopoulos has created a short animation showing the flow of Jupiter’s clouds. He also added some 3D relief by assigning elevation to the image’s greyscale, with lighter regions assigned higher altitudes.

I have embedded the animation below. Run it at the slowest speed for the best effect. It is quite spectacular, though it is also important to note that it is not reality. Thomopoulos is simply giving us a hint of the natural evolution of the cloud structures, both in elevation and in time.

You can see another equally impressive animation by Thomopoulos here of several of Jupiter’s polar storms, using AI technology to smooth out the loop.
» Read more

Lucy team suspends efforts to complete deployment of unlatched solar panel

Lucy's planned route
Lucy’s planned route to explore the Trojan asteroids

The Lucy science team has decided to suspend its efforts to complete the deployment of the unlatched solar panel that failed to fully open shortly after launch, having determined that little can be accomplished while the spacecraft is so far from the Sun.

A series of activities in 2022 succeeded in further deploying the array, placing it into a tensioned, but unlatched, state. Using engineering models calibrated by spacecraft data, the team estimates that the solar array is over 98% deployed, and it is strong enough to withstand the stresses of Lucy’s 12-year mission. The team’s confidence in the stability of the solar array was affirmed by its behavior during the close flyby of the Earth on Oct. 16, 2022, when the spacecraft flew within 243 miles (392 km) of the Earth, through the Earth’s upper atmosphere. The solar array is producing the expected level of power at the present solar range and is expected to have enough capability to perform the baseline mission with margin.

The team elected to suspend deployment attempts after the attempt on Dec. 13, 2022, produced only small movement in the solar array. Ground-based testing indicated that the deployment attempts were most productive while the spacecraft was warmer, closer to the Sun. As the spacecraft is currently 123 million miles (197 million km) from the Sun (1.3 times farther from the Sun than the Earth) and moving away at 20,000 mph (35,000 km/hr), the team does not expect further deployment attempts to be beneficial under present conditions.

The spacecraft will do another Earth fly-by on December 12, 2024, which will send it to the Trojans on the left side of the map above. Before that Lucy will do a mid-course correction in February 2024, at which time the engineers will reassess whether to try again to latch the panel, when Lucy is closer to Earth and thus also closer to the Sun.

Racing above the clouds of Jupiter

Racing above the clouds of Jupiter
Click for full image.

Cool image time! The photo above, reduced in size to post here, was created from a raw Juno image by citizen scientist Kevin Gill. From his caption:

A low perspective over Jupiter’s North Polar Storms. Used imagery from the Juno spacecraft’s recent Perijove 47 to render a simulated view as if the viewer were only a few thousand kilometers above the clouds. Applied simulated altimetry, shadowing, and upper atmospheric transparency depth in Blender and Photoshop to render this.

To get some perspective on how large Jupiter is, the planet’s curve is about comparable to the same curve seen by astronauts of the Earth at a height of about 300 to 400 kilometers. In this image however we are about ten times higher.

A new hotspot map of Io, based on Juno data

Hot spot map of Io
Click for original figure.

Scientists have compiled a new map of the many volcanic hotspots on the Jupiter moon Io, based on data obtained by Juno, including 23 spots previously undetected. From the paper’s abstract:

We mapped the hot spot distribution on Io’s surface by analyzing the images acquired by the JIRAM instrument onboard the Juno spacecraft. We identified 242 hot spots, including 23 not present in other catalogs. A large number of the new hot spots identified are in the polar regions, specifically in the northern hemisphere. The comparison between our work and the most recent and updated catalog reveals that JIRAM detected 82% of the most powerful hot spots previously identified and half of the intermediate-power hot spots, thus showing that these are still active. JIRAM detected 16 out of the 34 faint hot spots previously reported.

The map above is taken from figure 2 of the paper. The data, when compared to other earlier data, confirms that many of these hot spots are long-lived, and have been erupting now for decades.

Largest volcanic eruption in years detected on Io

Using instruments on a ground-based telescope, one scientist based at the Planetary Science Institute (PSI) in Arizona has detected the largest volcanic eruption in years on the Jupiter moon Io.

PSI Senior Scientist [Jeff] Morgenthaler has been using IoIO, located near Benson, Arizona to monitor volcanic activity on Io, since 2017. The observations show some sort of outburst nearly every year, but the largest yet was seen in the fall of 2022. Io is the innermost of Jupiter’s four large moons and is the most volcanic body in the Solar System thanks to the tidal stresses it feels from Jupiter and two of its other large satellites, Europa and Ganymede.

IoIO uses a coronagraphic technique which dims the light coming from Jupiter to enable imaging of faint gases near the very bright planet. A brightening of two of these gases, sodium and ionized sulfur, began between July and September 2022 and lasted until December 2022. The ionized sulfur, which forms a donut-like structure that encircles Jupiter and is called the Io plasma torus, was curiously not nearly as bright in this outburst as previously seen. “This could be telling us something about the composition of the volcanic activity that produced the outburst or it could be telling us that the torus is more efficient at ridding itself of material when more material is thrown into it,” Morgenthaler said.

The material released by this eruption could impact Juno during future close approaches of Jupiter.

Juno snaps heat image of Jupiter’s volcano-covered moon Io

Io's volcanoes
Click for full image.

The image to the right, cropped and reduced to post here, was taken on July 5, 2022 by one of the infrared instruments on the Jupiter orbiter Juno of the moon Io, known for having many many active volcanoes.

This infrared image was derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard Juno. In this image, the brighter the color the higher the temperature recorded by JIRAM.

Each bright spot is an active volcano, some of which have been in the past photographed during eruptions. In fact, the first such photo was taken in March 1979 by the Voyager-1 spacecraft just after its fly-by of Jupiter, and was the first time any active volcano outside of Earth had ever been identified.

What made that discovery more profound was that only a week earlier scientists had published a paper predicting active volcanoes on Io, caused by the strong tidal forces from Jupiter’s gravity.

Since then planetary scientists have been studying Io’s volcanism repeatedly, tracking the evolution of specific volcanoes over time as they erupt and then become dormant.

A pseudo-oblique view of Jupiter’s cloud-tops

A pseudo-oblique view of Jupiter's cloud-tops
Click for original image.

Cool image time! The image to the right, cropped, reduced, and annotated to post here, was created on October 18, 2022 by citizen scientist Thomas Thomopoulos from one of the photos taken by Juno during its close fly-by of Jupiter in May 2018.

He created this three dimensional relief by assigning different elevation values across the image’s greyscale, with white having the highest elevation. This relief is thus not based on actual topography, but it provides a nice way to illustrate the cloud structures of Jupiter’s cloud tops. It also, as Thomopoulos notes, provide a good way to possibly “see a representation in relief of surface movements.” Nor is his topography based on greyscale far wrong, since in many Jupiter images the lighter colored clouds are generally higher because the darker ones are in shadow.

The map below provides the context and scale of this image.
» Read more

Lucy to fly past Earth on October 16th

Lucy solar panel graphic
Artist’s impression of solar panel

As part of its planned route to get to the Trojan asteroids in Jupiter’s orbit, the planetary probe Lucy is scheduled to fly only 220 miles above the Earth’s surface on October 16th.

Lucy will be passing the Earth at such a low altitude that the team had to include the effect of atmospheric drag when designing this flyby. Lucy’s large solar arrays increase this effect.

“In the original plan, Lucy was actually going to pass about 30 miles closer to the Earth,” says Rich Burns, Lucy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “However, when it became clear that we might have to execute this flyby with one of the solar arrays unlatched, we chose to use a bit of our fuel reserves so that the spacecraft passes the Earth at a slightly higher altitude, reducing the disturbance from the atmospheric drag on the spacecraft’s solar arrays.”

That solar array remains unlatched (as shown in the graphic above), but because it is almost completely deployed and is producing about 90% of its intended electricity, engineers have ceased efforts to complete deployment and latching.

Europa in true color

Europa in true color
Click for full image.

The photo to the right, cropped and reduced to post here, was taken on September 29, 2022 by the Jupiter orbiter Juno during its close fly-by of Europa. Citizen scientist Bjorn Jonsson has processed it to bring out the details. From his caption:

This is an approximately true color/contrast, reprocessed version of Europa image PJ45_1. It is more carefully processed than the version I posted very shortly after the raw image data was released. The color should be fairly close to Europa’s real color and probably slightly more accurate than the color of the earlier version I posted. North is up.

The Sun is coming from the right, so those are craters in the upper left, close to the shadowed limb of the planet. The red color has been known for decades, and appears in many cases to be seepage coming up from the many meandering ridges that criss-cross the planet’s surface. Their chemistry/make-up is not fully known at this time.

Juno came within 219 miles of Europa, the closest any spacecraft has come since the Galileo orbiter circled Jupiter in the 1990s. I was expecting close-up images of the surface, from that close distance, but have not yet seen any. Instead, most of the images released and processed by citizen scientists have been global images from farther away. Thus, at this moment it does not appear Juno took pictures at this closest distance.

NASA releases first Juno image from the first close fly-by of Europa in decades

First released Juno image of Europa
Click for full image.

Kevin Gill's processed Juno image of Europa
Click for full image.

NASA yesterday released the first image from the successful close fly-by by Juno of Jupiter’s moon Europa since the 1990s. That photo, reduced and sharpened, is above.

The first picture NASA’s Juno spacecraft took as it flew by Jupiter’s ice-encrusted moon Europa has arrived on Earth. Revealing surface features in a region near the moon’s equator called Annwn Regio, the image was captured during the solar-powered spacecraft’s closest approach, on Thursday, Sept. 29, at 2:36 a.m. PDT (5:36 a.m. EDT), at a distance of about 219 miles (352 kilometers).

This is only the third close pass in history below 310 miles (500 kilometers) altitude and the closest look any spacecraft has provided at Europa since Jan. 3, 2000, when NASA’s Galileo came within 218 miles (351 kilometers) of the surface.

Meanwhile, the raw images have been pouring in, and citizen scientists have been quickly processing them. The photo to the right is only one example, created by Kevin Gill. I have cropped it to show one section in full resolution.

Expect many more processed images, especially those taken at closest approach, in the coming days.

Jupiter’s north pole cyclones appear as stable as those at the south pole

The northern polar cyclones of Jupiter
Click for original figure.

In reviewing five years of data from Juno, scientists now conclude that the polygon of large storms surrounding Jupiter’s north pole appear as stable as the same poloygon of storms found at the south pole.

Each polygon is made up of a central polar cyclone (PC) surrounded by a number of circum-polar cyclones (CPC). The image to the right, Figure 1 from the paper, compares the north polar storms from 2017 (top) to 2022 (bottom). During the five years of observations the whole polygon “rotated approximately 15° westward,” though it essentially maintained its structure.

After 5 years, the 8 + 1 North PCs structure and the 5 + 1 South one show very small changes; the lifetime of a single cyclone is therefore longer than 25 years and possibly longer than 75 years. Also, single cyclones have their peculiar morphology and this is often retained after 5 years, both in radiance and in morphology. In particular, this is the first time that we can observe the North CPCs system since the discovery in 2017, and we find that the structure is almost unperturbed.

The question that appears to remain unanswered by this data is whether these storms are deep-rooted to the interior of Jupiter or shallow structures. The stability suggests the latter, but this remains unproven.

Ganymede as seen by Juno

Ganymede as seen by Juno
Click to see full image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on June 7, 2021 when Juno made a close fly-by of Jupiter’s moon Ganymede. It has been reprocessed to bring out the details by citizen scientist Brian Swift.

Note the bands and parallel light and dark ridges that criss-cross the planet. Scientist as yet do not understand what caused them. Note also the bright impact craters, suggesting the release of water ice from below.

This image anticipates Juno’s upcoming September 29, 2022 fly-by of Europa, one of Jupiter’s other Galilean moons. The orbiter will pass only 221 miles above its surface, and get the best images in decades, since the Galileo mission in the 1990s.

A hot wave in Jupiter’s upper atmosphere has been discovered, flowing away from the pole

Jupiter heat wave

Using data obtained by ground-based telescopes, scientists have discovered a hot wave, with temperatures in the range of 700 degrees Celsius (about 1,300 degrees Fahrenheit), rolling outward from Jupiter’s hot polar atmospheric regions, believed caused by the gas giant’s intense aurora.

Jupiter’s atmosphere, famous for its characteristic multicoloured vortices, is also unexpectedly hot: in fact, it is hundreds of degrees hotter than models predict. Due to its orbital distance millions of kilometres from the Sun, the giant planet receives under 4% of the amount of sunlight compared to Earth, and its upper atmosphere should theoretically be a frigid -70 degrees Celsius. Instead, its cloud tops are measured everywhere at over 400 degrees Celsius.

…Just like the Earth, Jupiter experiences auroras around its poles as an effect of the solar wind. However, while Earth’s auroras are transient and only occur when solar activity is intense, auroras at Jupiter are permanent and have a variable intensity. The powerful auroras can heat the region around the poles to over 700 degrees Celsius, and global winds can redistribute the heat globally around Jupiter.

The graphic above, adapted from the research presentation [pdf], shows that wave propagating away from the pole. The wave’s width is about the size of the Earth, with different sections moving from about 1,000 feet per second to 8,000 feet per second.

Jupiter’s endless interweaving storms

Jupiter's endless interweaving storms

Cool image time! The photo to the right, rotated so that north is up and then reduced slightly to post here, was created by citizen scientist Thomas Thomopoulos from a raw photo taken by Juno during its 44th orbit of Jupiter.

To bring out the details Thomopoulos enhanced the colors, then enlarged the entire photo and cropped the area of interest.

Unfortunately, the Juno team that releases these photos does not provide information for easily establishing scale. In an email to me Thomopoulos noted that the largest circular storm in the northern half of the image is likely a vortex, which on Jupiter tend to range from 600 to 3,500 miles in diameter. He also noted that Juno was a little less than 27,000 miles away from Jupiter when this photo was snapped on August 17, 2022. Thus, I suspect this particular vortex sits on the larger end of that size range, which makes it a little less than half the size of the Earth.

As for the colors, as with many similar Juno images, the white clouds appear to almost always sit at the top of these storms and jets, almost like thunderheads.

Though the largest feature here is that large vortex to the north, most of the gigantic Jupiter storms visible seem instead to form as bands, the storms churning about madly as they are driven along the gas giant’s very fast ten hour rotation period.

Storm fronts on Jupiter

Storm front on Jupiter
Click for full image.

Cool image time! The picture to the right, cropped and reduced to post here, was processed by citizen scientist Thomas Thomopoulos from a raw image taken by the Jupiter orbiter Juno on August 17, 2022.

The orbiter was 18,354 miles above the cloud tops when the image was snapped. It shows a stormy cloud band in the southern hemisphere.

You can get a sense of the processing that Thomospoulos did by comparing this image with the raw photo. The original has almost no contrast, either in color or in contrast. By enhancing both Thomospoulos makes the violent nature of these large storms, thousands of miles in size, quite visible.

Another Webb infrared image of Jupiter released

Jupiter as seen in the infrared by Webb
Click for original image.

The science team for the James Webb Space Telescope today released another infrared false-color image of Jupiter, this time processed for science instead of calibration of the telescope after launch.

That image is to the right, reduced to post here. From the caption:

Several exposures in three different filters were assembled to create this mosaic, after being corrected for the rotation of the planet. The combination of filters yields an image whose colors denote the height of the clouds and the intensity of auroral emissions.

The F360M filter (mapped to the red-orange colors) is sensitive to light reflected from the lower clouds and upper hazes. The red features in the polar regions are auroral emissions, caused by ions excited through collisions with charged particles at altitudes up to 1000 km above the cloud level. Auroral emission in red is evident in the northern and southern polar regions and reaches high above the limb of the planet. In the F212N filter (mapped to yellow-green colors), the gaseous methane in Jupiter’s atmosphere absorbs light; the greenish areas around the polar regions come from stratospheric hazes 100-200 km above the cloud level. The stratospheric haze that appears green in this composite is also concentrated in the polar regions, but extends down to equatorial latitudes and can also be seen along the limbs (edges) of the planet. The cyan channel holds the F150W2 filter, which is primarily sensitive to reflected light from the Jupiter’s deeper main cloud level at about one bar.

The Great Red Spot, the hazy equatorial region and myriad small storm systems appear white (or reddish-white) in this false-color image. Regions with little cloud cover appear as dark ribbons north of the equatorial region. Some dark regions — for example, those next to the Great Red Spot and in cyclonic features in the southern hemisphere — are also dark-colored when observed in visible wavelengths.

This image is part of the telescope’s early release science program.

Jupiter’s internal structure, based on Juno data

Jupiter's internal structure
Click for original figure.

Scientists using Juno data of Jupiter’s magnetic field, combined with computer modeling, have now produced a rough map of the gas giant’s internal structure.

The image to the right, figure 2, of their paper, shows that structure. I have annotated the figure to provide some sense of scale. The bold violet line indicates their conclusions about the size of the dynamo that drives Jupiter’s powerful magnetic field, comprising more than 80 percent of the planet’s internal diameter. From the caption:

The gray area depicts the core (0.2 RJ) and the possible dilute core region. The violet area between the dotted lines (0.68 and 0.84 RJ) depicts the [hydrogen-helium] phase separated layer. The top dotted line at 0.95 RJ depicts the depth where the jets decay down to the minimum. The arrows represent possible convection area with unknown origin depth.

While this is a good first hypothesis based on the available data, that data remains quite sparse and uncertain. Thus, the conclusions here must be taken with a great deal of skepticism.

The big storms at Jupiter’s poles are coherent and stable

Storms on Jupiter
Click for full image.

After four years of observations by Juno in orbit around Jupiter, scientists studying the storms at the gas giant’s poles have found that those storms are stable, long-lasting features. From the abstract of their paper:

These data have shown cyclones organized in snowflake-like structures. The Jupiter’s polar cyclones are long-lasting features, which did not disappear or merge during four years of observations.

The image to the right, posted by me earlier this week, shows several of these storms, or vortices, at Jupiter’s north pole. Previous work had documented the overall pattern, as described in the paper:

The observed vortices display geometrical symmetries around both poles: circumpolar cyclones (CPCs), organized in a regular pattern, surround a central one. At the north pole, eight circumpolar vortices form an octagonal structure, while at the south pole, five circumpolar vortices are arranged in a pentagonal pattern; both central polar vortices show some degree of displacements to the geometrical pole, about 0.5° for the Northern Polar Cyclone (NPC) and 1°-2° for the Southern Polar Cyclone (SPC).

While this research has found little change in these storms over four years, it is unknown what their long term evolution will be for an entire Jupiter year, twelve Earth years long.

A crowd of Jupiter hurricanes

Storms on Jupiter
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on July 5, 2022 during Juno’s 43rd close fly-by of Jupiter, and was enhanced by citizen scientist Brian Swift. It shows a group of storms, what planetary scientists have labeled “vortices” near Jupiter’s north pole.

These powerful storms can be over 30 miles (50 kilometers) in height and hundreds of miles across. Figuring out how they form is key to understanding Jupiter’s atmosphere, as well as the fluid dynamics and cloud chemistry that create the planet’s other atmospheric features. Scientists are particularly interested in the vortices’ varying shapes, sizes, and colors. For example, cyclones, which spin counter-clockwise in the northern hemisphere and clockwise in the southern, and anti-cyclones, which rotate clockwise in the northern hemisphere and counter-clockwise in the southern hemisphere, exhibit very different colors and shapes.

The image highlights the type of storm Juno scientists are asking the pubic to category in a new citizen scientist project called Jovian Vortex Hunter. You go to its website and go through Juno images, noting and categorizing them. So far more than 2,400 volunteers have marked up more than 375,000 storms.

Webb infrared image of Jupiter & Europa

Jupiter and Europa as seen by Webb
Click for full image.

During the commissioning phase after deployment, the James Webb Space Telescope took images of Jupiter and several asteroids in order test the telescope’s instruments. The photo to the right, cropped and reduced to post here, shows both Jupiter and its moon Europa to the left.

Fans of Jupiter will recognize some familiar features of our solar system’s enormous planet in these images seen through Webb’s infrared gaze. A view from the NIRCam instrument’s short-wavelength filter shows distinct bands that encircle the planet as well as the Great Red Spot, a storm big enough to swallow the Earth. The iconic spot appears white in this image because of the way Webb’s infrared image was processed.

…Clearly visible at left is Europa, a moon with a probable ocean below its thick icy crust, and the target of NASA’s forthcoming Europa Clipper mission. What’s more, Europa’s shadow can be seen to the left of the Great Red Spot. Other visible moons in these images include Thebe and Metis.

The false color differences indicated differences in heat but it is not explained whether brighter is colder or warmer in this photo.. As one of my readers below correctly notes, Europa’s shadow tells us that darker is cooler. This one image shows that the Red Spot and Jupiter’s equatorial regions and poles are generally warm.

1 2 3 4 8