Schiaparelli landing apparently a failure

This report from russianspaceweb.com provides some details about the apparent landing failure of the European Mars probe Schiaparelli on Wednesday.

The very preliminary analysis of the data revealed a number of serious problems in the final phase of the parachute descent. The telemetry showed that the back heat shield holding the parachute had been ejected earlier than scheduled — 50 seconds instead of 30 seconds before the touchdown. Also, the lander was apparently descending at a speed higher than planned. There were also indications that the soft-landing engines had fired for only three or four seconds and all communications from the lander were cut 19 seconds later, or shortly before touchdown. By that time, Schiaparelli’s landing radar had been activated.

It appears the parachutes were released too soon so that they did not function properly and slow the spacecraft down enough. When the retro-rockets fired the spacecraft was probably also closer to the ground than planned and falling too fast, so they failed to stop it from impacting the surface hard and prematurely.

Fate of Schiaparelli remains unknown

While Europe’s Trace Gas Orbiter has successfully gone into orbit around Mars, it remains unknown whether the lander Schiaparelli was able today to land successfully on the surface.

The carrier signal from Schiaparelli recorded by Mars Express abruptly ended shortly before landing, just as the beacon tone received by a ground-based radio telescope in India stopped in real-time earlier today.

Paolo Ferri, head of ESA’s mission operations department, just gave an update on the situation. “We saw the signal through the atmospheric phase — the descent phase. At a certain point, it stopped,” Ferri said. “This was unexpected, but we couldn’t conclude anything from that because this very weak signal picked up on the ground was coming from an experimental tool.

“We (waited) for the Mars Express measurement, which was taken in parallel, and it was of the same kind. It was only recording the radio signal. The Mars Express measurement came at 1830 (CEST) and confirmed exactly the same: the signal went through the majority of the descent phase, and it stopped at a certain point that we reckon was before the landing.

“There could be many many reasons for that,” Ferri said. “It’s clear these are not good signs, but we will need more information.”

Mars rover update

Emily Lakdawalla at Sky & Telescope today provides an update of the two Mars rovers, but takes a different approach than I have. While I have been focusing on tracking where the rovers are going and what they are doing, she gives a very nice overview of each rovers’ condition, what instruments continue to work and what have failed.

I myself have not done a new rover update since October 6 for several reasons. First and foremost, neither rover has gone anywhere since my last report. Opportunity is still sitting on Spirit Mound, studying the rocks there. Curiosity is still in the flats south of Murray Buttes, preparing to drill another hole.

Secondly, there was a delay this past weekend in downloading data, especially from Curiosity. I strongly suspect that the delay was simply because the Deep Space Network was being used to help with communications between Europe and its ExoMars probes, now set to arrive at Mars tomorrow. When the lander Schiaparelli separated from the orbiter on Sunday they had had some initial communications problems, and it is likely that though ESA was using its own deep space network, they also enlisted ours to help.

Thirdly, I have been very tied up trying to finish my cave project monograph. This is done now, so I finally have more time to work on Behind the Black.

Mars in ultraviolet

Data from the Mars orbiter MAVEN have given scientists their first detailed look at the red planet in ultraviolet wavelengths.

New global images of Mars from NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission being led by CU Boulder show the ultraviolet glow from the Martian atmosphere in unprecedented detail, revealing dynamic, previously invisible behavior.

They include the first images of “nightglow” that can be used to show how winds circulate at high altitudes. Additionally, dayside ultraviolet imagery from the spacecraft shows how ozone amounts change over the seasons and how afternoon clouds form over giant Martian volcanoes. The images were taken by the Imaging UltraViolet Spectrograph (IUVS) on MAVEN.

The build-up of clouds over Mars’ four big volcanoes is especially interesting, since it is thought this water vapor likely comes from underground ice left over from glaciers that were once on the mountains’ slopes. A very short video of that build up can be seen, below the fold.
» Read more

ExoMars 2016 in detail

This Nature article provides a nice summary of the European/Russian ExoMars 2016 mission that on Wednesday will try to place a lander on Mars as well as put an orbiter in orbit.

Neither probe is going to provide many exciting photos. The orbiter, dubbed boringly the Trace Gas Orbiter, is designed to study Mars’ atmosphere, while the lander, Schiaparelli, is essentially a technology test mission for planning and designing what Europe and Russia hope will be a more ambitious lander/orbiter mission in 2020.

Anyone expecting spectacular pictures from Schiaparelli itself might be disappointed — photos will be limited to 15 black-and-white shots of the Martian surface from the air, intended to help piece together the craft’s trajectory. No photos will be taken on the surface, because the lander lacks a surface camera.

Schiaparelli’s instruments will study the Martian atmosphere, including the possible global dust storm that might happen this month but so far has not yet appeared. The instruments will also be able to detect lightning, should it exist on Mars.

ExoMars 2016 bearing down on Mars

This article provides a detailed look at Sunday’s arrival of ExoMars 2016 at Mars.

If all goes right the Schiaparelli lander will soft land on the surface while the Trace Gas Orbiter will enter an initial 185 by 60,000 mile orbit, which will slowly be adjusted so that by January it can begin its atmospheric research.

Though the Russian contribution to this mission was only the rocket that sent it to Mars, if the mission succeeds it will be the first time any Mars mission with major Russian participation has succeeded. The failure rate for any Russian effort to go to Mars has been 100%. And it hasn’t been because the missions have been particularly difficult. The majority of their failures occurred in the 1960s and 1970s, even as they were very successfully completing much harder lander missions to Venus.

It has almost as if there is a curse against any Russian attempt to visit the Red Planet. Hopefully, that curse will finally be broken on Sunday.

Opportunity to head into Endeavour Crater

The Opportunity science team has decided to next take the rover into the floor of Endeavour Crater.

The gully chosen as the next major destination slices west-to-east through the rim about half a mile (less than a kilometer) south of the rover’s current location. It is about as long as two football fields. “We are confident this is a fluid-carved gully, and that water was involved,” said Opportunity Principal Investigator Steve Squyres of Cornell University, Ithaca, New York. “Fluid-carved gullies on Mars have been seen from orbit since the 1970s, but none had been examined up close on the surface before. One of the three main objectives of our new mission extension is to investigate this gully. We hope to learn whether the fluid was a debris flow, with lots of rubble lubricated by water, or a flow with mostly water and less other material.”

The team intends to drive Opportunity down the full length of the gully, onto the crater floor. The second goal of the extended mission is to compare rocks inside Endeavour Crater to the dominant type of rock Opportunity examined on the plains it explored before reaching Endeavour.

If it is the gully I think, it is the slope visible in the panorama I created for this rover update two weeks ago. The science team has named the mound they have been studying Spirit Mound. The ridge line, visible in the panorama and to the south of the rover in the overhead view provided in the same September 27 rover update, has been dubbed Wharton Ridge. It is also possible that the entrance gully is the gully to the south of Wharton Ridge. Based on the information NASA has provided, I am not sure.

Either way, I had guessed that they would work their way south to Wharton Ridge along the edge of the crater rim, and then retreat away from the crater floor to do more study of the interior crater rim. It appears they have decided that the rover can safely descend the slope to enter the crater floor itself, and they aren’t going to wait any longer to do it.

Mars rover update: October 6, 2016

Curiosity

Post updated. See last paragraph of Curiosity section.

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Curiosity looking west, Sol 1475

Having moved south from Murray Buttes, the Curiosity science team has decided [see Sol 1473] that they will veer the rover to the southwest a bit, partly to check out some interesting features but also I think as part of a long term plan to find the best route through an area of sand dunes that blocks their path to the more interesting landscape at the base of Mount Sharp. The panorama above, created by me from images taken by the rover’s mast camera on Sol 1475, was taken to scope out this route, and is indicated below the fold in the overview released earlier this week by the rover science team and annotated by me to indicate the direction of this panorama as well as the rover’s present location. (Be sure to click on the panorama above to see it at full resolution.)
» Read more

Predicting the next Martian global dust storm

Scientists think they now have a method to predict the next global-wide dust storm on Mars, and based on this theory they predict it will happen very soon.

Global dust storms on Mars could soon become more predictable — which would be a boon for future astronauts there — if the next one follows a pattern suggested by those in the past. A published prediction, based on this pattern, points to Mars experiencing a global dust storm in the next few months. “Mars will reach the midpoint of its current dust storm season on October 29th of this year. Based on the historical pattern we found, we believe it is very likely that a global dust storm will begin within a few weeks or months of this date,” James Shirley, a planetary scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

This is most interesting because my next rover update, later today or tomorrow, is going to note the increasingly dusty atmosphere in Gale Crater. It isn’t a global dust storm, but maybe it is indicative of one that is about to happen.

Curiosity moves on

The Curiosity science team today put out press release summarizing what they have accomplished at Murray Buttes and what they hope to do next.

For those who have been reading my weekly rover updates on Behind the Black, most of this release will be old news. However, the release did provide the following interesting geological information that supplements what I have been reporting:

This latest drill site — the 14th for Curiosity — is in a geological layer about 600 feet (180 meters) thick, called the Murray formation. Curiosity has climbed nearly half of this formation’s thickness so far and found it consists primarily of mudstone, formed from mud that accumulated at the bottom of ancient lakes. The findings indicate that the lake environment was enduring, not fleeting. For roughly the first half of the new two-year mission extension, the rover team anticipates investigating the upper half of the Murray formation. “We will see whether that record of lakes continues further,” Vasavada said. “The more vertical thickness we see, the longer the lakes were present, and the longer habitable conditions existed here. Did the ancient environment change over time? Will the type of evidence we’ve found so far transition to something else?”

The “Hematite Unit” and “Clay Unit” above the Murray formation were identified from Mars orbiter observations before Curiosity’s landing. Information about their composition, from the Compact Reconnaissance Imaging Spectrometer aboard NASA’s Mars Reconnaissance Orbiter, made them high priorities as destinations for the rover mission. Both hematite and clay typically form in wet environments.

It also appears that the problems they had while doing the last drill hole were related to the electrical design flaw of Curiosity’s drill. It caused a short circuit this time, which is worrisome based on what I understand because this design flaw has the capability of shorting out the rover’s entire electrical system, ending the mission.

I will post a new rover update later this week, once I get back from Illinois.

Mars rover update: Sept 27, 2016

Curiosity

Curiosity traverse map, Sol 1471

For the overall context of Curiosity’s travels, see this post, Pinpointing Curiosity’s location in Gale Crater.

In the past week Curiosity finally left Murray Buttes and began moving south towards Mount Sharp, and, for at least one day, I thought tracking the rover’s movements might become easier. Early in the week the science team published an updated overhead traverse map that not only showed the topographical elevation contour lines for the surrounding terrain, but also included a blue line roughly indicating the rover’s future route. For reasons I do not understand, however, they only did this for one day, and then went back to the un-annotated traverse maps they had been using previously. I have therefore revised the most recent traverse map, shown on the right, to include these contour lines as well as the planned future route. The contour lines are hard to read on the full image, but below the fold on the right is a zoomed in view of Curiosity’s position as it left Murray Buttes, which shows the rover’s elevation at about 4376 meters below the peak of Mount Sharp. This means the rover has gained about 1,150 meters, or about 3,775 feet, since its landing, but only 50 meters or about 150 feet since March of this year. It is still not on the mountain but in the low foothills at its base.
» Read more

An ancient volcanic mountain chain on Mars

Using data from Mars Odyssey scientists have determined that a mountain chain on Mars was likely created as a chain of volcanoes.

They analyzed the geography and mineralogy of this area they termed Greater Thaumasia, which is about the size of North America. They also studied the chemistry of this area based on Gamma Ray Spectrometer data collected by the Mars Odyssey Orbiter, which was launched in 2001. What they found was the mountain ridge that outlines Greater Thaumasia was most likely created by a chain of volcanoes.

Their research also looked to see if water influenced the mountains’ formation and found no evidence for it. The mountain chain itself is south of the giant Valles Marineris canyons and southeast of the Tharsis region where Mars’ biggest four volcanoes are located.

Mars’ weird windblown surface

Wind scoured Martian surface

Cool image time! The image on the right, taken by Mars Reconnaissance Orbiter (MRO) and cropped from a wider view of a small crater and a small volcano caldera, certainly appears blurred and out of focus. Is MRO malfunctioning?

Nope. The blurring is actually an optical illusion caused almost entirely by our own assumptions of what a planet surface should look like combined with the alien processes occurring on Mars that have no equivalent here on Earth.

Below the fold is a wider view from the full image, showing the area of the cropped image to the right as well as the entire crater. Below that is another full resolution inset, this time showing the features on the crater rim that are sharp and stand out clearly. The blurriness of the rest of the image is not because the image is out-of-focus, but because a steady northwest-to- southeast wind has distorted everything in the same direction.
» Read more

An avalanche pile on Mars

Avalanche pile on Mars

Cool image time! The Mars Odyssey science team has released this very interesting image, cropped on the right, of an avalanche debris pile formed when the large section of cliff on the left broke off and collapsed into the valley below. The valley is called Tiu Valles and is located close to Mars’ equator.

The wide spread of the debris is an indication of several things. For one, it illustrates the light Martian gravity, which allowed the debris to flow much farther than it would have on Earth.

For another, the spread of the debris pile suggests to me that the material that fell was very crumbly. It might have been able to hold together as a cliff for a long time, but when it collapsed the material broke apart almost like sand. Think of a sand castle you might have built as a kid on the beach. With a little moisture you can pack the sand to form solid shapes, but if your shape breaks apart the sand falls not as large blocks but as crumbly soft and loose sand. That is what appears to have happened here.

There is also the suggestion to me that water might have been involved somehow in this collapse. I am not a geologist so this speculation on my part is very unreliable. However, the shape of the debris pile suggests a liquid flow. The flow itself wasn’t liquid, but liquid might have somehow been involved in causing this geological event. We would need a geologist however to clarify these guesses on my part.

Mars rover update: September 20, 2016

Opportunity comes first this time because it actually is more interesting.

Opportunity

For the overall context of Opportunity’s travels at Endeavour Crater, see this post, Opportunity’s future travels on Mars.

Having several choices on where to head, the Opportunity science team this week chose took what looks like the most daring route, heading almost due east towards the floor of Endeavour Crater. In fact, a review of their route and the images that the rover continues to take suggests that the panorama I created last week looked almost due east, not to the southeast as I had guessed. I have amended the most recent overhead traverse image, cropped and reduced below, to show what I now think that panorama was showing.
» Read more

New evidence of lakes and streams in Mars’ recent past

Using data from three different orbiters scientists have mapped out a region of lakes and streams on Mars that appear to have contained liquid water a billion years after the red planet is believed to have dried up.

To bracket the time period when the fresh shallow valleys in Arabia Terra formed, scientists started with age estimates for 22 impact craters in the area. They assessed whether or not the valleys carved into the blankets of surrounding debris ejected from the craters, as an indicator of whether the valleys are older or younger than the craters. They concluded that this fairly wet period on Mars likely occurred between two and three billion years ago, long after it is generally thought that most of Mars’ original atmosphere had been lost and most of the remaining water on the planet had frozen.

The characteristics of the valleys support the interpretation that the climate was cold: “The rate at which water flowed through these valleys is consistent with runoff from melting snow,” Wilson said, “These weren’t rushing rivers. They have simple drainage patterns and did not form deep or complex systems like the ancient valley networks from early Mars.”

This region, Arabia Terra, is the same area where scientists have found fossilized rivers.

A Mars Rover Update

I have decided to continue my Mars rover updates, and make them a regular mid-week feature here on Behind the Black. This is the first.

Curiosity

For the overall context of Curiosity’s travels, see this post, Pinpointing Curiosity’s location in Gale Crater.

Since my last updates here and here, Curiosity has moved south through the gap between buttes to exit the Murray Butte area. The initial slopes of Mount Sharp lie ahead, an open road with no apparent rough terrain to slow travel.

Doing science however does slow travel, and for good reason. Once through the gap the science team decided to swung the rover west and up against the base of the gap’s western butte, rather than immediately head south to climb the mountain. The Mars Reconnaissance Orbiter image below, cropped and reduced, illustrates this path.
» Read more

The flowing formations of Lethe Vallis

Cool image time! The Mars Reconnaissance Orbiter science team yesterday released several new images. Below is just one, cropped and reduced in resolution to post here. It shows a large flow channel called Lethe Vallis, formed first by lava, then hit by an impact which created a walled crater in its middle. Flood waters then followed, creating the tear-shaped dune surrounding the crater. In addition, erosion exposed the dark lava basalt below the surface on the edge of that tear-shaped dune. Within the crater itself can be seen ripple dunes formed by wind. As the scientists note,

This single image thus contains features formed by periglacial, volcanic, fluvial, impact, aeolian and mass wasting processes, all in one place.

Be sure to check out the full image.

Lethe Vallis

Mars rover update

It is time for an update on the journeys of Curiosity and Opportunity on Mars!

First, Curiosity. Though the science team has not yet updated the rover’s Mars Reconnaissance Orbiter traverse map showing its travels, it appears from Curiosity’s most recent navigation camera images that the rover has moved passed the first butte that had been ahead and directly to the south in the traverse map shown in the last image of my post here. The image below the fold, cropped and reduced to show here, looks ahead to the second butte and the gap to the south. Beyond Mt Sharp can be seen rising up on the right, with the upcoming ground open and relatively smooth. The only issue will be the steepness of that terrain. Based on my previous overall look at the rover’s journey, I suspect they will contour to the left.
» Read more

Opportunity’s steep downhill path

An update on Opportunity: The panorama I have created below from two images taken by its navigation camera and transmitted from Opportunity today, shows the steepness of the slope in Lewis and Clark Gap down which engineers are thinking of sending Opportunity. It appears also that Opportunity has moved closer to the gap since my post on Friday outlining the rover’s future travels.

I have not followed Opportunity’s entire journey on Mars close enough to say whether this will be the steepest downhill slope the rover has ever attempted. If not I suspect it is close to the steepest. I also suspect that they are still unsure whether they are going to attempt it, and are creeping slowly towards it to assess the situation.

Lewis and Clark Gap within Endeavour Crater's rim

Opportunity’s future travels on Mars

Opportunity's future path

Approaching the gap

Having spent a lot of time recently analyzing the travels of Curiosity in Gale Crater and in the foothills to Mount Sharp, I decided this week that I also needed to do the same with Opportunity at Endeavour Crater.

The image above is a panorama that I have assembled from images taken by Opportunity’s navigation camera on Sol 4477 (sometime last week). To the right is a panorama assembled from images taken by the navigation camera several days later, on Sol 4481, after Opportunity had moved closer to the gap shown in the first picture above. The inset in the image above shows the location of the image on the right. The X shows Opportunity’s approximate position.

Below the fold is the most recent orbital mosiac showing Opportunity’s recent travels near Endearvour Crater and in Marathon Valley, cropped and annotated by me to indicate the areas seen by the two panoramas above. The red dot shows Opportunity’s present position.
» Read more

NASA sets InSight’s new launch date to Mars

NASA has now set 2018 as the new launch date for its Mars InSight mission.

The mission was originally supposed to launch in 2016, but missed that launch window when significant problems cropped up during construction of the spacecraft’s French-built prime instrument. NASA has now taken much of the responsibility for building that instrument away from the French and given it to JPL.

The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet. Under what’s known as the mission “replan,” NASA’s Jet Propulsion Laboratory in Pasadena, California, will be responsible for redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.

The cost for the changes and reschedule is estimated to be more than $150 million, adding to the budget strain in NASA’s science programs already caused by the overruns from the James Webb Space Telescope.

The alien buttes of Mars

Weird Mars

The image above is cropped from a panorama created by reader Phil Veerkamp from images taken by Curiosity’s mast camera on August 25, 2016 of the terrain that partly surrounds the rover since it passed the Balanced Rock and traveled beyond Murray Buttes

The full image is too large to post here. However, if you click on the first link above you can either download it and peruse it at your leisure, or view it with your browser. You will definitely want to do so, as it is high resolution and shows a lot of strange and alien geology, including multiple slabs seemingly hanging in space because of the low gravity. (Hint: Be sure to pan all the way to the right!) On the image’s left Mount Sharp can be seen raising in the background. Below the fold I have annotated the most recent Mars Reconnaissance Orbiter image of Curiosity’s location to indicate what I think is the area included in this panorama. This MRO image also shows that once Curiosity gets through the narrow gap to the south, the path heading south up the mountain’s slopes will, for awhile at least, be relatively open with few large obstacles. The view will also change, as the rover will be out of the region of buttes.
» Read more

Another balanced rock!

A new balanced rock

Cool image time! The image to the right, cropped to show here, was taken by Curiosity’s mast camera this week as it surveys the upcoming terrain so that scientists can choose its route. It shows another balanced rock that is far more unbalanced than the one the rover passed last week.

In reviewing the survey images, I am not exactly sure whether this rock is located along Curiosity’s future route, as I have not been able to locate it in any of the panorama images the rover has taken. If it is in the gap they are aiming for, then we shall soon see some additional close-ups. If not, then we will have to content ourselves with some other views that, when you think about it, are really just as good.

Fossilized rivers on Mars

The uncertainty of science: Using high resolution images from Mars Reconnaissance Orbiter scientists have identified more than 10,000 miles of fossilized rivers on Mars.

The new study examined images covering an area roughly the size of Brazil at a much higher resolution than was previously possible – six metres per pixel compared to 100 metres per pixel. While a few valleys were identified, the team revealed the existence of many systems of fossilised riverbeds which are visible as inverted channels spread across the Arabia Terra plain.

The inverted channels are similar to those found elsewhere on Mars and Earth. They are made of sand and gravel deposited by a river and when the river becomes dry, the channels are left upstanding as the surrounding material erodes. On Earth, inverted channels often occur in dry, desert environments like Oman, Egypt, or Utah, where erosion rates are low – in most other environments, the channels are worn away before they can become inverted. “The networks of inverted channels in Arabia Terra are about 30m high and up to 1–2km wide, so we think they are probably the remains of giant rivers that flowed billions of years ago. Arabia Terra was essentially one massive flood plain bordering the highlands and lowlands of Mars. We think the rivers were active 3.9–3.7 billion years ago, but gradually dried up before being rapidly buried and protected for billions of years, potentially preserving any ancient biological material that might have been present,” added Joel Davis.

These geological forms are different than most of the more well-known Martian channels in that they are not channels but meandering riverlike ridges, higher than the surrounding terrain. Arabia Terra, where they are located, is a transition region in the northern mid-latitudes between Mars’s southern highlands and its northern flat plains, where some believe an ocean once existed.

China unveils its 2020 Mars lander/rover

The competition heats up: China today released design concepts of its planned 2020 Mars lander and rover.

According to Ye Peijian, one of China’s leading aerospace experts and a consultant to the program, the 2020 mission will be launched on a Long March-5 carrier rocket from the Wenchang space launch center in south China’s Hainan province. The lander will separate from the orbiter at the end of a journey of around seven months and touch down in a low latitude area in the northern hemisphere of Mars where the rover will explore the surface.

If they succeed they will have definitely moved ahead of Russia in the ranks of space-faring nations.

1 62 63 64 65 66 81