Large study finds saturated fats good!

The uncertainty of science: A new and very large health study has found that eating a high fat diets is actually healthy, and that the previous government dietary recommendations are seriously flawed.

That’s the conclusion of a massive new study published in Lancet that followed 135,335 people in 18 countries on five continents. The study found that consumption of fat was associated with a lower risk of mortality, while consumption of carbohydrates was associated with a higher risk. It found that the kind of fat didn’t matter when it came to heart disease, and that saturated fat consumption was inversely related to strokes.

The researchers say, ever so politely, that “dietary guidelines should be reconsidered in light of these findings.”

I’m not sure this new study should be trusted that much either. Regardless, it does indicate that the field of diet and health has a great deal of uncertainty, and that we should all consider with great skepticism any recommendations from the government, based on that science.

More info on Trappist-1 solar system

Astronomers, using ground-based and orbiting telescopes, have obtained more information about the seven Earth-sized exoplanets that orbit the star Trappist-1 forty light years away.

First, a European effort has found that the planets probably all have loads of water.

A new study has found that the seven planets orbiting the nearby ultra-cool dwarf star TRAPPIST-1 are all made mostly of rock, and some could potentially hold more water than Earth. The planets’ densities, now known much more precisely than before, suggest that some of them could have up to 5 percent of their mass in the form of water — about 250 times more than Earth’s oceans. The hotter planets closest to their parent star are likely to have dense steamy atmospheres and the more distant ones probably have icy surfaces. In terms of size, density and the amount of radiation it receives from its star, the fourth planet out is the most similar to Earth. It seems to be the rockiest planet of the seven, and has the potential to host liquid water.

Data from the Hubble Space Telescope has meanwhile found that three of the seven planets do not have hydrogen in their atmospheres, which at first seems to contradict the European data.

The Hubble observations took advantage of the fact that the planets cross in front of their star every few days. Using the Wide Field Camera 3, astronomers made spectroscopic observations in infrared light, looking for the signature of hydrogen that would filter through a puffy, extended atmosphere, if it were present. “The planets are close enough to their host star, and they have very short orbital periods, which means there are lots of opportunities to make observations,” Lewis said.

Although Hubble did not find evidence of hydrogen, the researchers suspect the planetary atmospheres could have contained this lightweight gaseous element when they first formed. The planets may have formed farther away from their parent star in a colder region of the gaseous protostellar disk that once encircled the infant star.

The Hubble results are actually not very significant. They show only that they did not detect hydrogen in the atmospheres of these three exoplanets, which does not mean it isn’t there. Moreover, this Hubble press release appears to have been issued as much to sell the James Webb Space Telescope and to say that Hubble is looking at Trappist-1 also!

I should add that all of these results are very uncertain. We are looking at something that is very small and is also very far away. Any data obtained is certainly not a precise measurement of what is actually there, only a mere hint.

Sunspot update for January 2018

Today NOAA posted its monthly update of the solar cycle, covering sunspot activity for January 2018. Below is my annotated version of that graph.

As you can see, the low sunspot activity of the past two months continued in January. November 2017 remains the most inactive month for sunspots since the middle of 2009. January is now the second most inactive month, with December a very close third.

January 2018 Solar Cycle graph

The graph above has been modified to show the predictions of the solar science community. The green curves show the community’s two original predictions from April 2007, with half the scientists predicting a very strong maximum and half predicting a weak one. The red curve is their revised May 2009 prediction.

Though activity continues to track close to but considerably below the 2007 weak prediction, the difference appears to be increasing as the ramp down to solar minimum continues. While I have said in past updates that the trend suggests an early arrival of the solar minimum, a close look at the previous ramp down in 2007 and 2008 shows that when activity became this weak, the ramp down slowed considerably. This previous pattern suggests that we could see another year or two of similarly low activity before the minimum arrives.

Regardless, the low activity, this soon, continues to suggest that the next maximum will also be weak, and might even not come at all, as some solar scientists have proposed. Instead, we might be heading toward another Grand Minimum, with no significant sunspots for decades.

Will that Grand Minimum produce cold weather worldwide, as it appears to have done during the last Grand Minimum in the 1600s? There is circumstantial evidence in the past decade that it might. We will not know, however, until it happens, and that possibility remains very uncertain.

Polar bears are starving! (NOT)

Fake science: Two articles yesterday from the so-called science journals Nature and Science today illustrate once again how pervasive the corruption in the climate field has now spread to almost anything that relates to climate.

Both articles refer to a paper published this week in Science, though the Nature article is far more detailed and longer. Researchers had tracked 9 polar bears during the spring months in three separate years, and had found that 5 of them had lost weight during this time period. From the Nature article:

Polar bear calorie use in spring

On average, the bears needed nearly 12,325 kilocalories per day — 1.6 times more energy than previously thought. To meet such energy demands, a female bear on the spring sea ice should eat either one adult or 19 newborn ringed seals every 10 to 12 days, the scientists concluded.

But nearly half of the bears didn’t catch enough food — and were forced to fast or scavenge carcasses. These animals lost 10% of their body mass over about 10 days. “That’s dramatic,” says physiologist John Whiteman at the University of New Mexico in Albuquerque. It’s as if a person weighing 80 kilograms shed 8 kilograms in just over a week, he says.

Catching enough to eat isn’t the only challenge polar bears face. As rising temperatures thin the sea ice, wind and currents make it drift faster on the ocean surface. “Think about a treadmill,” says Merav Ben-David, a wildlife ecologist at the University of Wyoming in Laramie. If the sea ice moves faster under their paws, polar bears have to walk faster — or for longer — to remain in the same spot3, which forces them to expend more energy, she says. [emphasis mine]

Oh my god! The polar bears are dying! And global warming is killing them!

What a joke. A quick look at the graph above, captured from the Science video, reveals that what the researchers really found is that four bears lost weight, four bears gained weight, and one stayed about the same. The bears studied weren’t “starving,” they represented what looks like an ordinary cross-section of population.

Moreover, this study is incredibly uncertain in that it only studied 9 bears, and only during the spring months during three years. What happens during the rest of the year? What would happen if they studied a larger population? While the data here teaches us something about the polar bear’s diet, calorie intake and calorie requirements, it is absolutely insufficient to provide any conclusions about the future of the bear population.

Worse, while both articles were quick to mention the threat from global warming, neither mentioned that the polar bear population continues to thrive, and has been doing so for the past decade, with no declines in almost all Arctic regions.

Further compounding the bad reporting here, while both articles repeated their religious belief in global warming and the impending disappearance of the Arctic icecap, there remains zero evidence in all data gathered of the ice pack by satellites and ground research that the icecap is shrinking significantly. In fact, while it had shown a steady decline through the first decade of the 21st century, in the past few years there has been a marked recovery. While these scientists might want the ice cap to disappear for political reasons, it simply isn’t doing so.

This is junk journalism and fake science. In fact, it is downright pitiful. That the reporting at such important science journals as these has become so slipshod speaks badly for the future of science in general.

Fractures in the floor of Occator Crater

Fractures in floor of Occator Crater

Cool image time! The Dawn science team has released an image of Ceres, cropped to post here in the right, that shows a spiderweb of fractures radiating out from a single point in the floor of Occator Crater.

These fractures have been interpreted as evidence that material came up from below and formed a dome shape, as if a piston was pushing Occator’s floor from beneath the surface. This may be due to the upwelling of material coming from Ceres’ deep interior. An alternative hypothesis is that the deformation is due to volume changes inside a reservoir of icy magma in the shallow subsurface that is in the process of freezing, similar to the change in volume that a bottle of water experiences when put in a freezer.

In the image sunlight is coming from the right. This fractured area can be seen in this earlier simulated oblique image of Occator Crater, in the southwest corner of the crater floor, well away from the crater’s more well known bright areas.

Curiosity takes a panorama that shows its entire journey so far

Cool image time! The Curiosity science team has released a panorama taken in October 2017 that looks north across the floor of Gale Crater and shows the rover’s entire journey since it landed in 2012.

Rather than post the image here, I have posted below the fold a video produced by the science team that pans across the entire panorama, and then shows where Curiosity has traveled in that panorama. Look close, and you will realize how truly little of Mars we have so far explored.
» Read more

The landing site of NASA’s next Mars lander

InSight's landing site on Mars

InSight, NASA’s next Mars lander scheduled to launch later this year (two years late), is aiming for a landing site in a region called Elysium Planitia, a flat plain north of the equator.

InSight’s scientific success and safe landing depends on landing in a relatively flat area, with an elevation low enough to have sufficient atmosphere above the site for a safe landing. It also depends on landing in an area where rocks are few in number. Elysium Planitia has just the right surface for the instruments to be able to probe the deep interior, and its proximity to the equator ensures that the solar-powered lander is exposed to plenty of sunlight.

The target area is centered at 4.5 N latitude and 135.9 East longitude. If you zoom in on that latitude and longitude at the archive of Mars Reconnaissance Orbiter (MRO) high resolution images, you get the red blob on the right, which shows how many images they have taken of this area in preparation for InSight’s mission. The X indicates the location of lat/long above.

Below the fold is a reduced version of the MRO image for the center of this target area. The black spots near the center are thought to be a recent crater impact site. In general, this image shows an area with more features than the region around it. Most of the landing area of Elysium Planitia is a featureless flat plain with scattered small craters. Since InSight is not a rover, where it lands will be where it does its research, so there was no reason to pick a site with lots of interesting surface features. Moreover, since InSight is focused not on studying the surface but the interior geology of Mars, it matters little what the surface looks like anyway. One instrument will be a seismograph, while another will insert a thermometer about sixteen feet into the ground to measure the interior temperature.
» Read more

Weird Martian geology: Kaiser Crater

Kaiser Crater bedrock

Cool image time! This week JPL’s image site highlighted a picture taken by Mars Odyssey of the floor and dunes inside Kaiser Crater, located to the west of Helles basin in an area dubbed the Noachis Region.

To my eye, the Mars Odyssey picture was interesting, but not worth a post here on Behind the Black. However, I decided to take a look at what HiRise, the high resolution camera of Mars Reconnaissance Orbiter (MRO), had taken of the same area, just out of curiosity. A search at the master HiRise image site at the same latitude and longitude (-45 latitude, 180 longitude) showed that HiRise had imaged a part of the same area, but at much higher resolution.

When I zoomed in on this hi resolution image I came across some interesting and weird geology, cropped to show here on the right. Now this, I thought, is worth posting. Notice how the dark tracks, caused by dust devils, leave no tracks as they cut across the brighter areas. Obviously, these bright areas have no dust or sand, and are likely solid bedrock of some kind. The depressions might be craters, but they also might not. The raised area around the depressions might have been caused by the impact, or it might have been caused by some internal geological process that caused the depression while also raising the surrounding bulge. Since then the wind has been steadily depositing sand in the depressions, causing it to get trapped there.

Scientists created tiny projected 3D image using light and lasers

While the technique and result is a far cry from a projected image of Princess Leia begging for help, scientists have now been able to create a tiny but simple projected 3D image using light and lasers.

Using a barely visible violet laser controlled by mirrors, the researchers trapped a cellulose particle and moved it rapidly through space. The quickly moving mote was illuminated by other, colored lasers, making it visible. By moving the trapped particle fast enough, the researchers were able to trace out patterns in the air that, to an observer, appeared as a single image. “It’s not unlike when you have a sparkler at nighttime and you draw your name in the air,” Smalley says. “We know intellectually that it’s just one spot, but our eyes will integrate if it goes too fast.”

The researchers admit that this research is not aimed at producing 3D TV. Instead, they say its best use would be to provide 3D images of tiny difficult-to-see places, such as human internal organs that physicians might need to travel through remotely to complete a surgery. The images, provided prior to surgery, would help make that surgery safer and more reliable.

Titan’s liquid hydrocarbon seas have a global sea level

New research using Cassini data has revealed that the liquid hydrocarbon oceans of Saturn’s moon Titan have a global sea level, with some small lakes perched at higher elevations.

The new study suggests that elevation is important because Titan’s liquid bodies appear to be connected under the surface in something akin to an aquifer system at Earth. Hydrocarbons appear to be flowing underneath Titan’s surface similar to the way water flows through underground porous rock or gravel on Earth, so that nearby lakes communicate with each other and share a common liquid level.

Mars rover update: January 16, 2018

Summary: Both rovers have moved little in the past month, Opportunity because it is in a good science location and because it must save energy during the winter and Curiosity because it is in a geological location so good the scientists appear to almost be going ga-ga over it.

Curiosity

null

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

In the month since my December 18 update, Curiosity has continued to head south rather than east as originally planned (as indicated by the dotted yellow line in the traverse map to the right). Moreover, the rover has not moved very much, because the science team has decided that there is just too much significant geology in this area on Vera Rubin Ridge, also part of a geological unit they have dubbed the Hematite Unit.

Right now the rover is located at an area they call “Region e,” one of the three patches I have also indicated on the image to the right. From the second update below:

This location is a slight depression with exposed fractured bedrock that appears more “blue” from orbit than the surrounding region. In addition, the orbital evidence and observations from the ground suggest that this location is similar to “Region 10” that we visited just last week, which was shown to have some pretty spectacular small-scale features that were of particular interest to many on the science team. As a result, the team was very excited to reach “Region e” and begin our scientific investigation!

The last few updates on the Curiosity mission update page indicate the excitement the geologists have for this site:
» Read more

The known ice cliffs on Mars

Last week there was a big NASA story about the discovery of eight locations on Mars where the evidence strongly suggests that these spots have cliff faces with exposed layers of water ice.

The press release however did not provide an overview about where those eight locations were. Only two locations were given, one for a scarp in Milankovič Crater in the northern hemisphere, and one in an area called Promethei Terra, located in the remote cratered highlands in the southern high-mid-latitudes.

The location of known ice scarps on Mars

After much digging (and some assistance from John Batchelor) I was finally able to obtain the latitudes and longitudes of all 8 locations. All but the scarp in Milankovič Crater crater (shown by the white dot north of Olympus Mons) are located in the white rectangular box shown to the south and east of Hellas Basin, the area with Mars’ lowest elevation. This part of Mars is not well imaged with the high resolution camera on Mars Reconnaissance Orbiter (indicated by the fewer number of red squares in the image), mostly because it appears relatively boring from a distance. Nothing appears to be there for hundreds and hundreds of miles except craters, sand, and sand dunes..

The discovery of these scarps in this area however changes the picture. It suggests that cratered highlands that surround Hellas Basin, including those close to the planet’s equator, could contain similar buried layers of ice. More research is necessary to pin down more locations, especially those closer to the equator where conditions might be more hospitable for a colony.

Moreover, educated readers of Behind the Black have previously noted that because of Hellas Basin’s low elevation the air pressure there is thicker, and therefore the location has some advantages as a potential colony location. These ice scarps raise the value of Hellas Basin considerably, as they suggest that such layers could easily be exposed as you descend into Hellas Basin. If such layers are exposed on the northern flanks of the basin, they would be at latitudes of around 25 to 30 degrees south, a much more friendly latitude for settlement.

A movie of Jupiter’s south polar region

Cool movie time! Using Juno images, a citizen scientist has created a short movie showing two complete rotations of Jupiter’s south polar regions. I have embedded the movie below the fold. It is definitely worth watching. As he notes,

Due to Jupiter’s low axial tilt we never see more than roughly one half of the area around the poles in sunlight at any given time. However, it is interesting to see what Jupiter’s polar regions would look like if things were different and a big area around the poles was illuminated. This rotation movie shows what Jupiter’s south polar region would look like near the time of southern summer solstice if Jupiter’s axial tilt was much greater than it is, i.e. comparable to Saturn’s axial tilt.

He also notes the puzzling fact that, though Jupiter and Saturn are both gas giants, unlike Saturn Jupiter does not have a vortex at its poles. In fact, he points out how none of Jupiter’s storms are centered at the pole. Why one gas giant should have such pole-centered vortexes while another does not is a big mystery that illustrates how very little we know about planetary formation and evolution.

The two rotations also do not show any changes in the storms, not because they aren’t changing but because the images used were taken over too short a time span to show this.
» Read more

Exposed mid-latitude ice deposits found on Mars

Scientists have discovered eight locations on Mars where underground ice appears to be exposed on cliff faces

The scarps directly expose bright glimpses into vast underground ice previously detected with spectrometers on NASA’s Mars Odyssey orbiter, with ground-penetrating radar instruments on MRO and on the European Space Agency’s Mars Express orbiter, and with observations of fresh impact craters that uncover subsurface ice. NASA sent the Phoenix lander to Mars in response to the Odyssey findings; in 2008, the Phoenix mission confirmed and analyzed the buried water ice at 68 degrees north latitude, about one-third of the way to the pole from the northernmost of the eight scarp sites.

The important thing about this discovery is that, though we have known for several years that water ice exists underground in the Martian mid-latitudes, this is the first time we have identified specific places there it is exposed and accessible.

Unfortunately, the press release does not provide the specific eight locations, except for the one image, which is located in the southern hemisphere in a region called Promethei Terra, far from areas that have been studied much more extensively. I will do some digging to see if I can identify the other seven locations.

NASA funds a cubesat-sized ultra-violet telescope

NASA has funded a cubesat-based ultra-violet telescope to launch in 2021.

SPARCS is a CubeSat built of six cubical units, each about four inches on a side. These are joined to make a spacecraft two units wide by three long in what is termed a 6U spacecraft. Solar power panels extend like wings from one end. “In size and shape, SPARCS most resembles a family-size box of Cheerios,” Shkolnik said.

The spacecraft will contain three major systems — the telescope, the camera, and the operational and science software. Along with Shkolnik, SESE astronomers Paul Scowen, Daniel Jacobs, and Judd Bowman will oversee the development of the telescope and camera, plus the software and the systems engineering to pull it all together. The telescope uses a mirror system with coatings optimized for ultraviolet light. Together with the camera, the system can measure very small changes in the brightness of M dwarf stars to carry out the primary science of the mission.

As I have noted numerous times recently, the space industry is splitting between large manned projects and tiny unmanned ones. While certain unmanned probes will always have to be larger, the ability to build and launch the same capabilities at a smaller size is lowering cost and allowing more probes to be launched.

NASA renames Swift telescope to honor Neil Gehrels

NASA has renamed the Swift space telescope, designed to quickly detect and observe fast transient events in space like gamma ray bursts, to honor the late Neil Gehrels, the man who led the project from day one.

During a presentation at a NASA town hall meeting at the 231st Meeting of the American Astronomical Society here, Thomas Zurbuchen, NASA associate administrator for science, said that Swift would now be known as the Neil Gehrels Swift Observatory.

Gehrels, who died in February 2017, had been principal investigator for Swift, a mission launched in 2004. The spacecraft was designed to be able to rapidly respond to transient events, such as gamma-ray bursts, observing them at wavelengths ranging from gamma rays to visible light.

“Neil wore many hats in service to the astrophysics community,” said Paul Hertz, director of NASA’s astrophysics division, at a later press conference at the meeting. In addition to being the principal investigator for Swift, had served as project scientist on the Compton Gamma-Ray Observatory and Fermi missions. At the time of his death last year he was project scientist for the Wide-Field Infrared Survey Telescope, NASA’s next flagship astronomy mission after the James Webb Space Telescope.

Knowing astronomers, they will now refer to this observatory as the NGSO. Not I. It will be “Gehrels Swift” to me, whenever I need to mention it. Gehrels was one of the most friendly, open, and easy-to-work-with astronomers I ever had to deal with. He is sorely missed.

A spectacular collapse feature at Arsia Mons

Collapse at Arsia Mons

Cool image time! This post could be called an update to my January 8th post, Exploring Arsia Mons. In that post I had compiled together the ten images of Arsia Mons, the southernmost volcano in the line of three giant volcanoes on Mars, that JPL had highlighted over several weeks in early January.

Today, I decided to do some of my own exploration of some of the many images taken of Arsia Mons by all of the Martian orbiters. My goal had been to explore the volcano’s western slopes (an area that had not been featured in the JPL releases) because that is the area where research has found evidence of past glacial activity as well as seasonal water clouds. I haven’t finished that survey, but in the process I came across a spectacular image of a collapse that had been visible in image nine of the January 8th post, but did not stand out there because of the lighting. The image on the right is that better image, cropped to focus in on the collapse itself.

The material at the base of the wall resembles piled up mud, which suggests this collapse is a Martian version of a mud slide. If so, it also suggests the presence of liquid. At the same time, the muddy look might not be from liquid but because of the lighter Martian gravity causing avalanches to be appear different there. The light gravity means material is not as dense, so when it collapses it might break apart more easily into a sandy type flow.

I am only an amateur geologist, so my theories here should not be taken very seriously. Nonetheless, I am sure there are planetary geologists who have looked at this closely because of the information about Martian geology that they can glean from it. I’d be curious to hear their thoughts.

Meanwhile, my exploration of the western slopes of Arsia Mons will continue. In Pioneer the science fiction book I wrote in the early 1980s (now available), I placed my Martian colony in Mangala Valles, a meandering canyon to the west of Olympus Mons that feeds out from the higher southern regions into the lower northern flat plains where even then some scientists thought an ocean might have once existed. My thinking then was that this might be a good location to find underground water. It now appears, with our greater knowledge, that the slopes of the volcanoes themselves might be more promising, and I am curious to find the most likely places in this region where a future colony might end up.

Almost 500 science papers in 2017 challenge “global-warming consensus”

The uncertainty of science: A survey of climate papers published in 2017 shows that 485 directly challenged the so-called “consensus” that activists claim exists about global warming.

Author Kenneth Richard found that during the course of the year 2017, at least 485 scientific papers were published that in some way questioned the supposed consensus regarding the perils of human CO2 emissions or the efficacy of climate models to predict the future.

According to Richard’s analysis, the 485 new papers underscore the “significant limitations and uncertainties inherent in our understanding of climate and climate changes,” which in turn suggests that climate science is not nearly as settled as media reports and some policymakers would have people believe.

This really is not a surprise for anyone who spends even a little time reading actual climate research. If you do, you immediately realize that the absurd claims of politicians (mostly Democrats) and activists about the certainty of human-caused global warming are based on their complete ignorance of the science. Some examples:

My point isn’t to say that human-caused global warming isn’t happening. We simply don’t know. The evidence so far is very inconclusive. And for those who advocate this theory, their own models have consistently failed to match the data. Skepticism is called for, which by the way is actually the hallmark of good science.

A new prime number, 23 million digits long

An online pubic program designed to allow ordinary people to use their computers to identify previously unknown prime numbers has found the largest so far, 23 million digits long.

It was discovered on December 26, 2017 by electrical engineer Jonathan Pace, and it initially took six days of non-stop number crunching to show that it was indeed a prime number. Pace was using a consumer-level PC running an Intel i5-6600 processor, and after it was identified it was then independently verified by other users, with a range of other programs and hardware setups.

First six segments of Extremely Large Telescope cast

The first six mirror segments of the European Southern Observatory’s Extremely Large Telescope have been successfully cast.

These segments will form parts of the ELT’s 39-metre main mirror, which will have 798 segments in total when completed. The ELT will be the largest optical telescope in the world when it sees first light in 2024.

The 39-metre-diameter primary mirror of ESO’s Extremely Large Telescope will be by far the largest ever made for an optical-infrared telescope. Such a giant is much too large to be made from a single piece of glass, so it will consist of 798 individual hexagonal segments, each measuring 1.4 metres across and about 5 centimetres thick. The segments will work together as a single huge mirror to collect tens of millions of times as much light as the human eye.

The segments must now be cooled, then their surfaces ground and polished to the right shape. If all goes right, they will make more than 900 segments (with about a 130 as spares), manufactured to have the telescope operational by 2024.

Sunspot update for December 2017

The precipitous decline in sunspots continues. While November 2017 remains the most inactive month for sunspots since the middle of 2009, December was a very close second.

Below is my annotated version of NOAA’s monthly update of the solar cycle, covering sunspot activity for December, which they posted on Sunday.

December 2017 Solar Cycle graph

The graph above has been modified to show the predictions of the solar science community. The green curves show the community’s two original predictions from April 2007, with half the scientists predicting a very strong maximum and half predicting a weak one. The red curve is their revised May 2009 prediction.

December 2017 sunspot record

The graph on the right, produced by SILSO (Sunspot Index and Long-term Solar Observations) on December 31, shows only 14 days during the month when there were sunspots active on the Sun’s visible hemisphere. This is only four more days then seen in November. And like November, the few sunspots were weak, resulting in tiny sunspot numbers total.

The first graph above illustrates how weak this on-going sunspot cycle has been. While the curve most closely matches the 2007 weak prediction of half the solar science community, it has one very notable difference. The actual ramp up to solar maximum started two years later than predicted, even though it appears to be ending when that prediction expected. The result is a very very short solar cycle, something that has historically always been associated with very active and intense sunspot activity. Instead, this short cycle has only seen weak activity, generally below all the predictions.

All signs continue to point to an early arrival of solar minimum. They also suggest that the next maximum will also be weak, and might even not come at all, as some solar scientists have proposed. Instead, we might be heading toward another Grand Minimum, with no significant sunspots for decades.

So, is it cold outside right now? Well, that’s weather, not climate. Nonetheless, there is a lot of circumstantial evidence that few sunspots correspond with a cooling climate on Earth. (The last grand minimum occurred in the 1600s, during what was called the Little Ice Age.) There is even some preliminary evidence to suggest that cosmic rays might be a cause. (Watch the video at the end of this link.).

Whether any of this will happen however remains unknown. We will need to wait to find out.

Exploring Arsia Mons

Master index

In November over a period of two weeks the Mars Odyssey team posted ten images of Pavonis Mons, the smallest of the aligned three giant volcanoes just to the east of Olympus Mons, the largest known volcano in the solar system. I then made all of those images available in a single link, with some analysis.

They have now done the same thing for the southernmost (and possibly the most interesting) of those three aligned volcanoes, Arsia Mons. From the first image below:

Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth.

In other words, you could fit almost all of Mauna Loa entirely within the caldera of Arsia Mons.

The image on the right above is the master index, annotated by me to show the area covered by each image. The images can accessed individually below.
» Read more

Curiosity images small tubelike rock features on Vera Rubin Ridge

tubes on Mars

During Curiosity’s extended science observations in the past month on Vera Rubin Ridge the rover has found a number of rocks with strange tubelike features that remind some scientists of fossils. The image on the right, taken by the rover’s Mars Hand Lens Imager (MAHLI) and cropped and reduced to post here, shows some of these weird tubes.

The origin of these odd features — geological or biological processes — is in TBD limbo at the moment. Regarding trace fossils on Mars, “we don’t rule it out,” Vasavada said, “but we certainly won’t jump to that as our first interpretation.”

Close-up looks at these features show them to be angular in multiple dimensions. That could mean that they are related to crystals in the rock, perhaps “crystal molds” that are also found here on Earth, Vasavada added. Crystals in rock that are dissolved away leave crystal molds, he said.

Still, that’s just one of a few possibilities, Vasavada explained. “If we see more of them … then we begin to say that this is an important process that’s going on at Vera Rubin Ridge,” he said.

The article outlines a number of other possible explanations, including fossil remains. None are convincing at this time, based on the limited data. Nor does Curiosity have the equipment to clarify things much.

A faint seasonal fluctuation of methane on Mars?

The uncertainty of science: Data from Curiosity during its two Martian years on Mars have revealed a faint but distinct seasonal fluctuation in the amount of methane in the local atmosphere, a fluctuation that scientists do not have a good explanation for.

Since landing in 2012, Curiosity has on 30 occasions opened a few valves to the martian night and taken a sniff of the thin, frigid air. In a small, mirrored chamber, it shines a laser through the air sample and measures the absorption at specific wavelengths that indicate methane. At the meeting, Webster reported vanishingly small background levels of the gas: 0.4 parts per billion (ppb), compared with Earth’s 1800 ppb.

Where that whiff comes from is the heart of the mystery. Microbes (including those that live in the guts of cows and sheep) are responsible for most of Earth’s methane, and Mars’s could conceivably come from microbes as well—either contemporary microbes or ancient ones, if the methane they produced was trapped underground. But methane can also be made in ways that have nothing to do with biology. Hydrothermal reactions with olivine-rich rocks underground can generate it, as can reactions driven by ultraviolet (UV) light striking the carbon-containing meteoroids and dust that constantly rain down on the planet from space.

Now, add to the methane puzzle the seasonal variation Curiosity has detected, with levels cycling between about 0.3 ppb and 0.7 ppb over more than two martian years. Some seasonality is expected in an atmosphere that is mostly carbon dioxide (CO2), says François Forget, who models the climate of Mars at the Laboratory of Dynamical Meteorology in Paris. In the southern winter, some of that CO2 freezes out onto the large southern polar cap, making the overall atmosphere thinner. That boosts the concentration of any residual methane, which doesn’t freeze, and by the end of northern summer this methane-enriched air makes its way north to Curiosity’s location, Forget says. Seasonal variations in dust storms and levels of UV light could also affect the abundance of methane, if interplanetary dust is its primary source.

But, Webster said at the meeting, the seasonal signal is some three times larger than those mechanisms could explain. Maybe the methane—whatever its source—is absorbed and released from pores in surface rocks at rates that depend on temperature, he said. Another explanation, “one that no one talks about but is in the back of everyone’s mind,” is biological activity, says Mike Mumma, a planetary scientist at Goddard Space Flight Center in Greenbelt, Maryland. “You’d expect life to be seasonal.”

They have a lot of theories, from asteroids to alien life, but none really explains this adequately.

Was the solar system formed inside a giant bubble?

Don’t bet the house on this! Astronomers have come up with a new theory for the formation of the solar system, that it was formed inside a giant bubble inside a Wolf-Rayet star, in order to explain the known ratios of certain isotopes here.

The new theory for how the solar system formed starts with an extremely massive star known as a Wolf-Rayet star. Of all the stars in the universe, these stars burn the hottest. Because they are so hot, they also have exceptionally strong stellar winds.

As a Wolf-Rayet star sheds its outer layers – a normal end-of-life process for a giant star – its strong stellar winds plow through its loosely held cloak of material, forming densely shelled bubbles. According to the study, the solar system could have formed inside of one of these bubbles.

While this theory would explain a number of mysteries about the ratios of aluminum-26 and iron-60 in our solar system, which correspond closer to those in a Wolf-Rayet star than the galaxy itself, it is quite far-fetched. More hard data is necessary, including real evidence of such things actually happening in such stars, before it can be taken very seriously.

New data from Tabby’s Star suggests that dust, not alien megastructures, is the cause of its dimming

New observations of Tabby’s Star now suggests that it is dust, not alien megastructures, that has caused the star’s erratic fluctuations in dimming over the past century.

“Dust is most likely the reason why the star’s light appears to dim and brighten. The new data shows that different colors of light are being blocked at different intensities. Therefore, whatever is passing between us and the star is not opaque, as would be expected from a planet or alien megastructure,” said [LSU Department of Physics & Astronomy Assistant Professor Tabetha Boyajian].

Though the data appears strong, it still leaves astronomers a bit baffled about how dust could cause the particular dimming they have seen.

A short dose of ultraviolet light might save North America’s bats

Researchers have found that the fungus that has been decimating bat populations in the eastern United States for the past decade is easily killed by a short dose of ultraviolet light.

Upon being compared to six non-pathogenic Pseudogymnoascus species, it was found that P. destructans lacks a key enzyme that allows it to repair DNA damage caused by ultraviolet light. When samples of the fungus were exposed to a low dose of UV-C light from a handheld source, the survival rate was only about 15 percent – this dropped to less than 1 percent when the dose was moderate. In both cases, the duration of exposure was a matter of no more than a few seconds.

Next comes a control group experiment. If this proves true, than it might be possible to safely sterilize both bat populations and caves of the fungus. To work, however, the task will likely require repeated yearly visits to bat hibernation sites to kill the fungus before it causes the bats to wake up in the winter. Such visits have their own problems, and would be difficult to pay for. However, I am sure the caving community across the U.S. would be glad to volunteer for this effort, and could handle it.

Scientists catch a big volcano eruption on Io

Scientists reviewing twenty year old data from the Galileo orbiter that studied Jupiter and its moons in the 1990s have identified the most intense volcanic eruption yet found on Io.

While looking through the NIMS temperature data, Davies and his colleagues spotted a brief but intense moment of high temperatures that cooled oddly quickly. This signal showed up as a spike in heat from a region in the southern hemisphere called Marduk Fluctus. First, the researchers saw a heat signal jump to 4–10 times higher than background, or relatively normal, levels. Then just a minute later, the signal dropped about 20%. Another minute later, the signal dropped another 75%. Twenty-three minutes later, the signal had plummeted to the equivalent of the background levels.

This signature resembled nothing Davies had seen before from Io. The lava flows and lava lakes are familiar: Their heat signals peter out slowly because as the surface of a lava flow cools, it creates a protective barrier of solid rock over a mushy, molten inside. Heat from magma underneath conducts through this newly formed crust and radiates from Io’s surface as it cools, which can take quite a long time.

This new heat signature, on the other hand, represents a process never before seen on Io, Davies said: something intense, powerful, and—most important—fast.

There’s only one likely explanation for what the instruments saw, explained Davies, whose volcanic expertise starts here on Earth. Large, violent eruptions like those seen at Stromboli are capable of spewing huge masses of tiny particles into the air, which cool quickly.

The article makes it sound like we’ve never seen this kind of eruption on Io before, which isn’t really true. Such eruptions have been imaged, but this is the first time that infrared data of their temperature spike was captured, thus confirming its nature.

Arecibo returns to operation with images of asteroid Phaethon

The Arecibo Observatory in Puerto Rico has resumed science observations after recovering from Hurricane Maria with new radio images of the asteroid Phaethon.

After several months of downtime after Hurricane Maria blew through, the Arecibo Observatory Planetary Radar has returned to normal operation, providing the highest-resolution images to date of near-Earth asteroid 3200 Phaethon during its Dec. 16 flyby of Earth. The radar images, which are subtle at the available resolution, reveal the asteroid is spheroidal in shape and has a large concavity at least several hundred meters in extent near the leading edge, and a conspicuous dark, circular feature near one of the poles. Arecibo’s radar images of Phaethon have resolutions as fine as about 250 feet (75 meters) per pixel.

The images also revealed that Phaethon, which is considered a potentially hazardous near Earth asteroid, is about 3.6 miles across and is about a half mile larger than previously believed.

1 129 130 131 132 133 274