Hubble finds galaxy with record-breaking redshift

The uncertainty of science: Using the Hubble Space Telescope astronomers have discovered a galaxy with the largest redshift ever measured, 11.1, making it the most distant object so far measured and only about 400 million years after the Big Bang..

The uncertainty is that all theories have said that this galaxy was not supposed to exist at that time.

However, the discovery also raises many new questions as the existence of such a bright and large galaxy is not predicted by theory. “It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon,” explains Garth Illingworth of the University of California, Santa Cruz.

Marijn Franx, a member of the team from the University of Leiden highlights: “The discovery of GN-z11 was a great surprise to us, as our earlier work had suggested that such bright galaxies should not exist so early in the Universe.” His colleague Ivo Labbe adds: “The discovery of GN-z11 showed us that our knowledge about the early Universe is still very restricted. How GN-z11 was created remains somewhat of a mystery for now.”

Titan’s changing shorelines

Shoreline changes on Titan

Cool image time! Using radar images taken during the past decade by Cassini scientists have discovered changes taking place along the shorelines of Titan’s hydrocarbon seas.

Analysis by Cassini scientists indicates that the bright features, informally known as the “magic island,” are a phenomenon that changes over time. They conclude that the brightening is due to either waves, solids at or beneath the surface or bubbles, with waves thought to be the most likely explanation. They think tides, sea level and seafloor changes are unlikely to be responsible for the brightening.

The images in the column at left show the same region of Ligeia Mare as seen by Cassini’s radar during flybys in (from top to bottom) 2007, 2013, 2014 and 2015.

These shoreline changes are not the only ones spotted by Cassini. However, because these are radar images, not visual, there are many uncertainties about what causes the changes, which is why they list several possibilities. For example, with radar, a simple roughness on the surface (such as waves) could cause a brightening.

Astronauts return after 340 days on ISS

After 340 days in space astronauts Scott Kelly and Mikhail Kornienko safely returned to Earth early today.

Now the real research begins. Because Kelly has an identical twin, Mark Kelly, who is also a former astronaut, researchers will be able to gain a great deal of knowledge comparing the differences in how their bodies changed over the nearly full year, with one in weightlessness and the other on Earth.

However, what I want is longer missions, two or three years long, thus far exceeding what it would take to travel to and from Mars. Only then can we find out if humans will be able to make the journey safely.

Honing the search for alien civilizations

Worlds without end: In order to increase the odds of contacting extraterrestrial civilizations, astronomers have calculated the area in the sky where an alien-built Kepler could have seen the Earth transit the sun, thus increasing the chances that those alien-astronomers have discovered Earth and have tried to contact us.

“The key point of this strategy is that it confines the search area to a very small part of the sky. As a consequence, it might take us less than a human life span to find out whether or not there are extraterrestrial astronomers who have found the Earth. They may have detected Earth’s biogenic atmosphere and started to contact whoever is home,” explains René Heller from the MPS.

Not every star is equally well suited as a home of extraterrestrial life. The more massive a star, the shorter is its life span. Yet, a long stellar life is considered a prerequisite for the development of higher life forms. Therefore the researchers compiled a list of stars that are not only in the advantageous part of the sky but also offer good chances of hosting evolved forms of life, that is, intelligent life. The researchers compiled a list of 82 nearby Sun-like stars that satisfy their criteria. This catalogue can now serve as an immediate target list for SETI initiatives.

UC-Berkeley Chemistry College to shutter?

The coming dark age: The University of California in Berkeley is considering disbanding its College of Chemistry to deal with $150 million pf debt.

One commenter noted this key fact: “What about African American Studies and Gender and Women’s Studies? Are those programs going to be affected too?” with two others adding sarcastically, “No, they are essential,” and “Because they teach such marketable skills.”

Wrapping up the longest space mission by an American

My how time flies: Astronaut Scott Kelly’s almost year-in-space is scheduled to end on March 1st.

Kelly and cosmonaut Mikhail Kornienko will come back to Earth Tuesday (March 1), wrapping up an unprecedented 340-day stay on the orbiting lab. (Crewmembers typically live and work aboard the station for 5 to 6 months at a time.)

The article is wrong when it calls this mission “unprecedented.” The Russians have flown four astronauts in space for more than a year, with one spending 14.5 months in orbit. Though Kelly’s experience will provide valuable data for future long term missions to the planets, it remains disappointing to me that NASA didn’t have the courage to push this beyond the previous Russian record.

Fraud in many science surveys?

The uncertainty of science: An analysis of scientific surveys suggests that one in five may contain fake data.

With few exceptions, they limited their analysis to studies that asked more than 1000 people at least 75 questions on a range of topics. And to be conservative, they forgave studies for which at least 95% of the data passed the test.

That made the results all the more worrying: Among 1008 surveys, their test flagged 17% as likely to contain a significant portion of fabricated data. For surveys conducted in wealthy westernized nations, that figure drops to 5%, whereas for those done in the developing world it shoots up to 26%.

To me the difference found between first and third world countries makes the results more believable. It suggests that survey companies who do these surveys have a problem that should be addressed. Instead, the research

is being hotly disputed by the Pew Research Center, one of the major funders of such surveys. And the organization has gone so far as to request the researchers desist from publishing their work.

Pew reviewed the questionable surveys and found evidence that the analysis produced some false positives. They used this as reason to reject its results entirely. That the analysis has also been successful in detecting fraud in several surveys apparently does not concern them.

LISA Pathfinder cubes in freefall

After a week of testing scientists have now completely released LISA Pathfinder’s two gold-platinum cubes so that they are floating free within the spacecraft.

With the cubes released, the spacecraft is now measuring the position of each cube and using thrusters to adjust its position and keep the cubes floating within it. This success has essentially proven that the technology works, though they now have to see if the technology can be maintained in orbit for a long enough period of time to be worthwhile. If so, this mission will be followed by multiple similar spacecraft, flying in formation while also measuring their positions precisely relative to each other. If a gravitational wave rolls past, they will detect it by the tiny differences of each cube’s position, kind of like beach balls floating on the ocean as a wave rolls past.

The cratered surface of Ceres

Craters on Ceres

Cool image time! As Dawn continues its survey of Ceres the science team is beginning to release images looking sideways at the planet, rather than straight down, in order to get a better understanding of the topography. The image to the right is an example. It shows the area around 37-mile-wide Fluusa Crater. I have cropped it to emphasize the most rugged areas, especially the jagged cliff meandering away towards the horizon.

This image provides a hint at the differences between Ceres and the Moon. Up until now Dawn images have given the impression that Ceres is very much like the heavily cratered lunar surface. The terrain in this image however suggests to me that Ceres’ surface crust is much less dense because of the low gravity, and thus has a light puffy feel to it. The Moon’s surface is rarely this uneven, as its higher gravity has pounded things down, smoothing them out somewhat.

Toy boat crosses the Atlantic

A toy boat launched by students in South Carolina has been found by beach-goers in Wales.

The boat had been launched by fourth graders from St Andrews School of Math and Science in Charleston as part of a project to teach students about the ocean. This was in May 2015. The Carolina Dreamer traveled over 6400 kilometers across the pond, making a pit stop in Bermuda along the way.

The students equipped the vessel with a time capsule and GPS tracker before sending it out to sea. Although it lost a sail along the way, the boat transmitted its location 16 kilometers from the town of Aberstwyth, prompting the teacher behind the idea, Amy McMahon, to contact the local marines.

The best part of the story? School officials in Wales are planning to launch the boat back towards the western hemisphere.

A frozen underground ocean on Charon?

Data from New Horizons of the surface of Pluto’s moon Charon now suggests that the satellite once had an underground ocean that is now frozen.

Charon’s outer layer is primarily water ice. When the moon was young this layer was warmed by the decay of radioactive elements, as well as Charon’s own internal heat of formation. Scientists say Charon could have been warm enough to cause the water ice to melt deep down, creating a subsurface ocean. But as Charon cooled over time, this ocean would have frozen and expanded (as happens when water freezes), pushing the surface outward and producing the massive chasms we see today.

India okays its own LIGO detector

The Indian government today approved construction of LIGO-India, using some duplicate components already available from the American LIGO gravitational wave detector.

“We have built an exact copy of that instrument that can be used in the LIGO-India Observatory,” says David Shoemaker, leader of the Advanced LIGO Project and director of the MIT LIGO Lab, “ensuring that the new detector can both quickly come up to speed and match the U.S. detector performance.” LIGO will provide Indian researchers with the components and training to build and run the new Advanced LIGO detector, which will then be operated by the Indian team.

What this new instrument will accomplish is to give astronomers more information when a gravitational wave rolls past the Earth. By having detectors half a world apart, they will be able to better triangulate the direction the wave came from, which in turn will help astronomers eventually pinpoint its source event.

Hubble measures the rotation of an exoplanet

Worlds without end: Using the Hubble Space Telescope astronomers have measured the daily rotation of a super Jupiter exoplanet 170 light years away.

They estimate, based upon brightness variations attributed to clouds in the upper atmosphere, that the rotation rate is about 10 hours long. We should all recognize however the significant uncertainty of this number. Clouds change, as do weather conditions. The data only gives us a hint at what is going on here.

Astronomers make first analysis of a SuperEarth’s atmosphere.

Worlds without end: Using the Hubble Space Telescopes astronomers have made the first chemical analysis of a SuperEarth’s atmosphere.

The planet, 55 Cancri e, is estimated to have a mass of eight Earths. Its atmosphere was found to have hydrogen, helium, and the molecule hydrogen cyanide. No water was detected.

Astronomers have used Hubble to detect the components of a number of exoplanets, but these have all been giant planets more like Jupiter. This is the first measurement of an exoplanet whose mass is small enough that it might be rocky, like Earth.

LISA Pathfinder’s cubes floating free

More gravitational wave news: LISA Pathfinder’s two gold-platinum 46mm cubes have been released and are now floating free inside their spacecraft.

After a week of further testing, they will stop controlling the cube’s positions with electrostatic force. They will then watch them very precisely with lasers to test whether the equipment is capable of detecting distance shifts small enough for a future version, made up of three such spacecraft, to detect gravitational waves. The idea is that, as a wave rolls by, the cubes will shift positions at slightly different times, just as different beach balls will do so on ocean waves.

The first geology map of Pluto

Geology map of Pluto

The New Horizons science team has now released the first geology map of a portion of Pluto, seen by the spacecraft during its fly-by last year.

It is definitely worth your while to take a look at the full image, along with the legend explaining the different surface features. Most of the geological terms are merely descriptive, but the careful breakdown still provides a much deeper understanding of what is there.

Big solar storm not so big

The uncertainty of science: A new analysis of the the 1859 giant solar storm, the first ever detected and dubbed the Carrington event after the scientist who discovered it, suggests that its strength was not global as previously believed, and that it only effected a few spots on Earth.

Up until now the Carrington event has been considered the strongest solar storm to ever hit the Earth, and has been used by the solar satellite industry as a wedge to demand funding for solar warning satellites, claiming that if a similar storm was to ever hit the Earth again without warning, it would destroy civilization as we know it. This new data suggests that this threat has been over-stated.

Why am I not surprised?

Tests confirm meteorite at India impact site

The uncertainty of science: Even as NASA officials poo-poo the suspected meteorite impact in India that killed a bus driver, India scientists have done a chemical analysis of one of the rocks found near the site and found it to be a meteorite fragment.

According to a preliminary report by National College Instrumentation Facility (NCIF) in Trichy, a Scanning Electron Microscope (SEM) study on samples retrieved from the campus in Vellore where the blast occurred shows the “presence of carbonaceous chondrites”.

“Carbonaceous denotes objects containing carbon or its compounds and chondrites refer to non-metallic meteorite parts containing mineral granules,” K Anbarasu, a geologist who is also principal of the Trichy-based National College, told The Indian Express.

There remains uncertainty because the fragments tested did not actually come from the impact crater itself.

Anbarasu said the preliminary SEM study was conducted on “small pieces of black material” found near the blast site. “The crater formed at the spot had been already disturbed by other investigators. So we inspected the entire campus as any meteor incident would scatter several objects across the area before landing. Finally, we spotted several small pieces of this black material, one the size of a paperweight, on the terrace of a building nearby,” Anbarasu said.

Nonetheless, I think it unprofessional and inappropriate for a NASA official to comment on this event half a globe away. There is no way that they can really determine anything from the available photos taken of the impact site, and thus they should shut up.

The final search for Philae

This review of the journey of Rosetta’s lander Philae, now dead on the surface of Comet 67P/C-G, includes information about the science’s team upcoming last effort to locate the lander.

The comet’s level of activity is now decreasing, allowing Rosetta to safely and gradually reduce its distance to the comet again,” says Sylvain Lodiot, ESA’s Rosetta spacecraft operations manager. “Eventually we will be able to fly in ‘bound orbits’ again, approaching to within 10–20 km – and even closer in the final stages of the mission – putting us in a position to fly above Abydos close enough to obtain dedicated high-resolution images to finally locate Philae and understand its attitude and orientation.”

“Determining Philae’s location would also allow us to better understand the context of the incredible in situ measurements already collected, enabling us to extract even more valuable science from the data,” says Matt Taylor, ESA’s Rosetta project scientist.

They intend to try to re-establish communications with the lander, but do not have much expectations that it is able to function.

First direct detection of a gravitational wave

The science team from the Laser Interferometer Gravitational-wave Observatory (LIGO) announced today that on September 14, 2015 they made the first direct detection of a gravitational wave, produced by the merging of two distant black holes.

Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of the sun, and the event took place 1.3 billion years ago. About three times the mass of the sun was converted into gravitational waves in a fraction of a second — with a peak power output about 50 times that of the whole visible universe. By looking at the time of arrival of the signals — the detector in Livingston recorded the event 7 milliseconds before the detector in Hanford — scientists can say that the source was located in the Southern Hemisphere.

According to general relativity, a pair of black holes orbiting around each other lose energy through the emission of gravitational waves, causing them to gradually approach each other over billions of years, and then much more quickly in the final minutes. During the final fraction of a second, the two black holes collide at nearly half the speed of light and form a single more massive black hole, converting a portion of the combined black holes’ mass to energy, according to Einstein’s formula E=mc2. This energy is emitted as a final strong burst of gravitational waves. These are the gravitational waves that LIGO observed.

Because of the faintness of the wave signal, I suspect that the scientists involved have spent the last four months reviewing their data and the instrument very carefully, to make sure this was not a false detection. That they feel confident enough to make this announcement tells us that they think the detection was real.

Recently ESA launched Lisa Pathfinder, a prototype space-based gravitational wave detector designed to test the technology for building a larger in-space observatory that would be far more sensitive that LIGO. Funding for that larger detector has dried up, Today’s announcement will likely help re-energize that funding effort.

More information here.

1 162 163 164 165 166 280