The neck of Comet 67P/C-G in color

Rosetta’s high resolution camera has taken a color image of Comet 67P/C-G’s narrow neck, the area where the most plume activity has taken place.
When seen with the human eye, comet 67P/Churyumov-Gerasimenko is grey – all over. With its color filters Rosetta’s scientific imaging system OSIRIS, however, can discern tiny differences in reflectivity. To this effect, scientists from the OSIRIS team image the same region on the comet’s surface using different color filters. If, for example, the region appears especially bright in one of these images, it reflects light of this wavelength especially well.
“Even though the color variations on 67P’s surface are minute, they can give us important clues”, says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany. In a recent analysis performed by the OSIRIS team, the Hapi region clearly stands out from the rest of the comet: while most parts of 67P display a slightly reddish reflectivity spectrum as is common for cometary nuclei and other primitive bodies, the reflection of red light is somewhat lower in this region.
They as yet do not know exactly why the smooth area at the neck has a very slight blueish tinge, though they suspect it is because of the presence of a higher percentage of frozen water.
Rosetta’s high resolution camera has taken a color image of Comet 67P/C-G’s narrow neck, the area where the most plume activity has taken place.
When seen with the human eye, comet 67P/Churyumov-Gerasimenko is grey – all over. With its color filters Rosetta’s scientific imaging system OSIRIS, however, can discern tiny differences in reflectivity. To this effect, scientists from the OSIRIS team image the same region on the comet’s surface using different color filters. If, for example, the region appears especially bright in one of these images, it reflects light of this wavelength especially well.
“Even though the color variations on 67P’s surface are minute, they can give us important clues”, says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany. In a recent analysis performed by the OSIRIS team, the Hapi region clearly stands out from the rest of the comet: while most parts of 67P display a slightly reddish reflectivity spectrum as is common for cometary nuclei and other primitive bodies, the reflection of red light is somewhat lower in this region.
They as yet do not know exactly why the smooth area at the neck has a very slight blueish tinge, though they suspect it is because of the presence of a higher percentage of frozen water.