Galaxies without end
Cool image time! The picture to the right, reduced and enhanced to post here, was taken by the Hubble Space Telescope as part of a monitoring program studying the two supernovae that have occurred in this galaxy previously.
Hubble has turned its attention toward NGC 1309 several times; previous Hubble images of this galaxy were released in 2006 and 2014. Much of NGC 1309’s scientific interest derives from two supernovae, SN 2002fk in 2002 and SN 2012Z in 2012. SN 2002fk was a perfect example of a Type Ia supernova, which happens when the core of a dead star (a white dwarf) explodes.
SN 2012Z, on the other hand, was a bit of a renegade. It was classified as a Type Iax supernova: while its spectrum resembled that of a Type Ia supernova, the explosion wasn’t as bright as expected. Hubble observations showed that in this case, the supernova did not destroy the white dwarf completely, leaving behind a ‘zombie star’ that shone even brighter than it did before the explosion. Hubble observations of NGC 1309 taken across several years also made this the first time the white dwarf progenitor of a supernova has been identified in images taken before the explosion.
The image however carries a far more philosophic component. Except for the star near the top (identified by the four diffraction spikes), every single dot and smudge you see in this picture is a galaxy. NGC 1309 is about 100 million light years away, but behind it along its line of sight and at much greater distances are innumerable other galaxies, so many it is impossible to count them. And each is roughly comparable in size to our own Milky Way galaxy, containing billions of stars.
The scale of the universe is simply impossible to grasp, no matter how hard we might try.
Cool image time! The picture to the right, reduced and enhanced to post here, was taken by the Hubble Space Telescope as part of a monitoring program studying the two supernovae that have occurred in this galaxy previously.
Hubble has turned its attention toward NGC 1309 several times; previous Hubble images of this galaxy were released in 2006 and 2014. Much of NGC 1309’s scientific interest derives from two supernovae, SN 2002fk in 2002 and SN 2012Z in 2012. SN 2002fk was a perfect example of a Type Ia supernova, which happens when the core of a dead star (a white dwarf) explodes.
SN 2012Z, on the other hand, was a bit of a renegade. It was classified as a Type Iax supernova: while its spectrum resembled that of a Type Ia supernova, the explosion wasn’t as bright as expected. Hubble observations showed that in this case, the supernova did not destroy the white dwarf completely, leaving behind a ‘zombie star’ that shone even brighter than it did before the explosion. Hubble observations of NGC 1309 taken across several years also made this the first time the white dwarf progenitor of a supernova has been identified in images taken before the explosion.
The image however carries a far more philosophic component. Except for the star near the top (identified by the four diffraction spikes), every single dot and smudge you see in this picture is a galaxy. NGC 1309 is about 100 million light years away, but behind it along its line of sight and at much greater distances are innumerable other galaxies, so many it is impossible to count them. And each is roughly comparable in size to our own Milky Way galaxy, containing billions of stars.
The scale of the universe is simply impossible to grasp, no matter how hard we might try.