The organic dust of Comet 67P/C-G
A study of the dust released by Comet 67P/C-G and captured by Rosetta shows that carbon molecules appear to comprise the comet’s largest component, and that this material is found in the form of very large macromolecules.
As the study shows, organic molecules are among those ingredients at the top of the list. These account for about 45 percent of the weight of the solid cometary material. “Rosetta’s comet thus belongs to the most carbon-rich bodies we know in the solar system,” says MPS scientist and COSIMA team member Dr. Oliver Stenzel. The other part of the total weight, about 55 percent, is provided by mineral substances, mainly silicates. It is striking that they are almost exclusively non-hydrated minerals i.e. missing water compounds. “Of course, Rosetta’s comet contains water like any other comet, too,” says Hilchenbach. “But because comets have spent most of their time at the icy rim of the solar system, it has almost always been frozen and could not react with the minerals.” The researchers therefore regard the lack of hydrated minerals in the comet’s dust as an indication that 67P contains very pristine material.
…The current findings also touch on our ideas of how life on Earth came about. In a previous publication, the COSIMA team was able to show that the carbon found in Rosetta’s comet is mainly in the form of large, organic macromolecules. Together with the current study, it becomes clear that these compounds make up a large part of the cometary material. Thus, if comets indeed supplied the early Earth with organic matter, as many researchers assume, it would probably have been mainly in the form of such macromolecules.
Organic here does not mean life, but is instead used as chemists use it, to mean the molecule includes the element carbon. The results do suggest however that the early solar system had a lot of carbon available, and that much of it was in a relatively pure form available to interact with other elements.
A study of the dust released by Comet 67P/C-G and captured by Rosetta shows that carbon molecules appear to comprise the comet’s largest component, and that this material is found in the form of very large macromolecules.
As the study shows, organic molecules are among those ingredients at the top of the list. These account for about 45 percent of the weight of the solid cometary material. “Rosetta’s comet thus belongs to the most carbon-rich bodies we know in the solar system,” says MPS scientist and COSIMA team member Dr. Oliver Stenzel. The other part of the total weight, about 55 percent, is provided by mineral substances, mainly silicates. It is striking that they are almost exclusively non-hydrated minerals i.e. missing water compounds. “Of course, Rosetta’s comet contains water like any other comet, too,” says Hilchenbach. “But because comets have spent most of their time at the icy rim of the solar system, it has almost always been frozen and could not react with the minerals.” The researchers therefore regard the lack of hydrated minerals in the comet’s dust as an indication that 67P contains very pristine material.
…The current findings also touch on our ideas of how life on Earth came about. In a previous publication, the COSIMA team was able to show that the carbon found in Rosetta’s comet is mainly in the form of large, organic macromolecules. Together with the current study, it becomes clear that these compounds make up a large part of the cometary material. Thus, if comets indeed supplied the early Earth with organic matter, as many researchers assume, it would probably have been mainly in the form of such macromolecules.
Organic here does not mean life, but is instead used as chemists use it, to mean the molecule includes the element carbon. The results do suggest however that the early solar system had a lot of carbon available, and that much of it was in a relatively pure form available to interact with other elements.



