Less evidence of dark matter in early universe
The uncertainty of science: Astronomers have discovered less evidence of dark matter surrounding galaxies in early universe.
Stars in the outer regions of some far-off galaxies move more slowly than stars closer to the center, indicating a lack of dark matter, astronomer Reinhard Genzel and colleagues report online March 15 in Nature. If confirmed, the result could lead astronomers to reconsider the role dark matter played in early galaxy evolution and might also offer clues to how nearby elliptical galaxies evolved.
In contrast with these distant galaxies, stars orbiting on the outskirts of the Milky Way and other nearby galaxies move too fast for their velocities to result only from the gravity of gas and stars closer to the galactic center. If visible galactic matter is embedded in a cloud of invisible dark matter, though, gravity from the invisible matter can explain the high stellar velocities. Using stars’ orbital velocities in nearby galaxies as a reference, astronomers expected that stars in galaxies farther away would behave similarly. “Turns out that is not the case,” says study coauthor Stijn Wuyts of the University of Bath in England.
In other words, scientists at this moment really have no idea what causes the faster rotation in the outskirts of modern nearby galaxies.
The uncertainty of science: Astronomers have discovered less evidence of dark matter surrounding galaxies in early universe.
Stars in the outer regions of some far-off galaxies move more slowly than stars closer to the center, indicating a lack of dark matter, astronomer Reinhard Genzel and colleagues report online March 15 in Nature. If confirmed, the result could lead astronomers to reconsider the role dark matter played in early galaxy evolution and might also offer clues to how nearby elliptical galaxies evolved.
In contrast with these distant galaxies, stars orbiting on the outskirts of the Milky Way and other nearby galaxies move too fast for their velocities to result only from the gravity of gas and stars closer to the galactic center. If visible galactic matter is embedded in a cloud of invisible dark matter, though, gravity from the invisible matter can explain the high stellar velocities. Using stars’ orbital velocities in nearby galaxies as a reference, astronomers expected that stars in galaxies farther away would behave similarly. “Turns out that is not the case,” says study coauthor Stijn Wuyts of the University of Bath in England.
In other words, scientists at this moment really have no idea what causes the faster rotation in the outskirts of modern nearby galaxies.