Webb finds Earth-sized exoplanet likely too hot to have atmosphere

The uncertainty of science: Using the infrared Webb Space Telescope, scientists have measured the temperature of the Earth-sized exoplanet, dubbed Trappist-1b, and found its temperature is probably too hot to have atmosphere.

The red dwarf star Trappist-1is about 40 light years from Earth, and in 2017 was found to have a solar system of seven exoplanets, all rocky terrestrial planets like the inner planets of our solar system. Trappist-1b is the innermost exoplanet. To measure its temperature, Webb observed the star while the planet was eclipsed by the star as well as when it was not, and measured the tiny difference in infrared light.

The team analyzed data from five separate secondary eclipse observations. “We compared the results to computer models showing what the temperature should be in different scenarios,” explained Ducrot. “The results are almost perfectly consistent with a blackbody made of bare rock and no atmosphere to circulate the heat. We also didn’t see any signs of light being absorbed by carbon dioxide, which would be apparent in these measurements.”

As this was the innermost of the star’s solar system, it is also the one most likely to lack an atmosphere. Webb’s observations of the system continue, so there is a chance that data about the other exoplanets will eventually tell us more about them.

A multitude of strange galaxies

A multitude of strange galaxies
Click for original image.

Cool image time! The picture to the right, reduced and sharpened to post here, was taken by the Hubble Space Telescope and released today. From the caption:

Z 229-15 is one of those interesting celestial objects that, should you choose to research it, you will find defined as several different things: sometimes as an active galactic nucleus (an AGN); sometimes as a quasar; and sometimes as a Seyfert galaxy. Which of these is Z 229-15 really? The answer is that it is all of these things all at once, because these three definitions have significant overlap.

All three classifications involve galaxies with nuclei that are brighter, more energetic, and more massive than the rest of the galaxy. Z229-15 itself is estimated to be 390 million light years away.

Normally I would have cropped the image to center on Z229-15. However, I was struck by the number of other strange galaxies in the distance and on the periphery of the picture. Near the top is a trio of three, none of which appear spiral- or elliptical-shaped. On the right is a galaxy that could be a standard spiral seen edge-on, but its red nucleus is very unusual. And scattered across the bottom half of the image are a number of weirdly shaped galaxies of all types, none of which appear typical.

Be sure to look at the high resolution original. There are more weird galaxies visible there.

Hubble spots long term seasonal changes on Uranus

Uranus as seen by Hubble in 2014 and 2022
Click for original image.

Using images of Uranus taken eight years apart by the Hubble Space Telescope, astronomers have detected significant seasonal changes in the atmosphere of the gas giant, caused by its unusual sideways rotation.

The two pictures to the left, realigned and reduced to post here, show the changes. If you look closely you can see the planet’s ring system and its shift to almost face on at present.

[top] — This is a Hubble view of Uranus taken in 2014, seven years after northern spring equinox when the Sun was shining directly over the planet’s equator, and shows one of the first images from the OPAL program. Multiple storms with methane ice-crystal clouds appear at mid-northern latitudes above the planet’s cyan-tinted lower atmosphere. Hubble photographed the ring system edge-on in 2007, but the rings are seen starting to open up seven years later in this view. At this time, the planet had multiple small storms and even some faint cloud bands.

[bottom] — As seen in 2022, Uranus’ north pole shows a thickened photochemical haze that looks similar to the smog over cities. Several little storms can be seen near the edge of the polar haze boundary. Hubble has been tracking the size and brightness of the north polar cap and it continues to get brighter year after year. Astronomers are disentangling multiple effects – from atmospheric circulation, particle properties, and chemical processes – that control how the atmospheric polar cap changes with the seasons. At the Uranian equinox in 2007, neither pole was particularly bright.

To really understand the long term climate of Uranus will likely take centuries, since its year lasts 84 Earth years. Since the beginning of space exploration, we have only had now about forty years of good imagery of the planet, and even that has been sporadic and very incomplete.

Samples from Ryugu found to contain uracil, one of the four nucleobases in RNA

Japanese researchers analyzing the samples returned by Hayabusa-2 from the rubble-pile asteroid Ryugu have identified the molecule uracil, one of the four nucleobases that form the molecule RNA.

Hayabusa 2 collected 5.4 grams from two spots on Ryugu and delivered them to Earth on December 6, 2020. Early studies showed the samples contained many organic compounds. That led Oba’s group to analyze two 10-milligram samples using the same sensitive technique they had used earlier on meteorites. The technique can detect nucleic acid bases at levels down to parts per trillion in small samples.

Now, they report in Nature Communications that uracil is present at a level of parts per billion in both Ryugu samples. While this concentration is different than they’d previously found in meteorites, Oba says that might be because the parent bodies of the meteorites and of Ryugu underwent different levels of aqueous alteration and other processes. They also detected niacin (vitamin B3) as well as other organic molecules, but they didn’t find any other nucleobases.

RNA is formed from four nucleobases, uracil, adenine, cytosine, and guanine. To form DNA, the fundamental building block of life, uracil is replaced by thymine.

This data reinforces other data that suggests the formation of these essential molecules for life is relatively common and easy, at least in our solar system.

Dimorphus is dry, based on data obtained before and after DART hit it

Data collected by the ground-based Very Large Telescope (VLT) in Chile before and after the impact by the DART probe in September 2022 has revealed that the rubble-pile asteroid Dimorphos is very dry, with little or no water.

[The astronomers] observed the Didymos–Dimorphos system on 11 occasions, from just before the impact to about a month afterwards. MUSE [one of VLT’s instruments] is able to split the light from the double-asteroid into a spectrum, or rainbow, of colors, to look for emission at specific wavelengths that corresponds to specific molecules. In particular, Opitom’s team searched the ejecta for water molecules and for oxygen that could have come from the break-up of water molecules by the impact. However, no evidence of water was detected. Dimorphos, at least, seems to be a dry asteroid.

You can read the paper here.

Some theories prior to DART’s impact suggested that there could be ice within some inner solar system asteroids. Finding none instead suggests that inner solar system asteroids are very distinct and different from the icy comets and asteroids either coming from or orbiting in the outer solar system.

Webb detects “hot sand clouds” in atmosphere of exoplanet

Using the Webb Space Telescope, astronomers have detected “hot sand clouds” in atmosphere of exoplanet 40 light years away, along with evidence of water, methane, carbon monoxide, carbon dioxide, sodium, and potassium.

You can read the paper here [pdf]. The exoplanet itself appears to have some features that resemble that of a brown dwarf, or failed star, instead of an exoplanet.

Although VHS 1256 b is more on the heavier side of the known exoplanets, its gravity is relatively low compared to more massive brown dwarfs. Such very low-mass stars can only burn deuterium for a relatively short duration. Consequently, the planet’s silicate clouds can appear and remain higher in its atmosphere, where the JWST can detect them. Another reason its skies are so turbulent is the planet’s age. In astronomical terms, it is pretty young. Only 150 million years have passed since it formed. The planet’s heat stems from the recent formation process – and it will continue to change and cool over billions of years.

The sand clouds are hot, in the range of 1,500 degrees Fahrenheit.

These results were obtained as part of an early-release program from Webb, and illustrate the potential of the infrared space telescope for learning many specific details about brown dwarfs and exoplanets.

Blobs and jellyfish in space

Blobs and Jellyfish
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today.

The galaxy JW100 features prominently in this image from the NASA/ESA Hubble Space Telescope, with streams of star-forming gas dripping from the disc of the galaxy like streaks of fresh paint. These tendrils of bright gas are formed by a process called ram pressure stripping, and their resemblance to dangling tentacles has led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. It is located in the constellation Pegasus, over 800 million light-years away.

Ram pressure stripping occurs when galaxies encounter the diffuse gas that pervades galaxy clusters. As galaxies plough through this tenuous gas it acts like a headwind, stripping gas and dust from the galaxy and creating the trailing streamers that prominently adorn JW100. The bright elliptical patches in the image are other galaxies in the cluster that hosts JW100.

The image was part of a research project studying star formation in the tendrils of jellyfish galaxies.

The blob near the top of the image is another galaxy in this same galaxy cluster. It is an elliptical galaxy that also happens to have two central nuclei, caused when two smaller galaxies merged. The central regions of each have not yet merged into one.

Hubble looks at a nearby dwarf galaxy

A nearby dwarf galaxy
Click for original image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a continuing project to capture high resolution images of every nearby galaxy, which in this particular case the caption describes as follows:

UGCA 307 hangs against an irregular backdrop of distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The small galaxy consists of a diffuse band of stars containing red bubbles of gas that mark regions of recent star formation, and lies roughly 26 million light-years from Earth in the constellation Corvus. Appearing as just a small patch of stars, UGCA 307 is a diminutive dwarf galaxy without a defined structure — resembling nothing more than a hazy patch of passing cloud.

The red regions of star formation are significant, as they indicate that even in a tiny galaxy like this it is possible for there to be enough gas and dust to coalesce into new stars.

Astronomers living on a world inside this galaxy have an advantage over astronomers on Earth. There is no large galaxy like the Milky Way blocking their view of the cosmos in one direction. They can see it all, even in directions looking through UGCA 307.

Webb finds another galaxy in early universe that should not exist

The uncertainty of science: Scientists using the Webb Space Telescope have identified another galaxy about 12 billion light years away and only about 1.7 billion years after the theorized Big Bang that is too rich in chemicals as well as too active in star formation to have had time to form.

SPT0418-SE is believed to have already hosted multiple generations of stars, despite its young age. Both of the galaxies have a mature metallicity — or large amounts of elements like carbon, oxygen and nitrogen that are heavier than hydrogen and helium — which is similar to the sun. However, our sun is 4.5 billion years old and inherited most of its metals from previous generations of stars that were eight billion years old, the researchers said.

In other words, this galaxy somehow obtained complex elements in only 1.7 billion years that in our galaxy took twelve billion years, something that defies all theories of galactic and stellar evolution. Either the Big Bang did not happen when it did, or all theories about the growth and development of galaxies are wrong.

One could reasonably argue that this particular observation might be mistaken, except that it is not the only one from Webb that shows similar data. Webb’s infrared data is challenging the fundamentals of all cosmology, developed by theorists over the past half century.

Newly discovered comet could be brightest object in sky in October ’24

Comet Tsuchinshan-ATLAS, discovered simultanuously by telescopes in China and South Africa, has the possibility of becoming brightest object in sky when it makes its closest approach to the Earth in October 2024.

As viewed from Earth, the comet may be as luminous as the brightest stars in the sky during its upcoming flyby, according to EarthSky. This is brighter than the green comet C/2022 E3 that just passed by Earth in January. That comet had a brightness of around magnitude +4.6, just visible to the naked eye. The new comet may have a brightness of magnitude 0.7, potentially peaking at magnitude -5, similar to Venus at its brightest.

The comet is presently between Jupiter and Saturn. Its 80,000 year long orbit will make its next close approach to the Sun on September 28, 2024.

Whether this will become a naked eye object of beauty of course remains totally uncertain. Its orbit, which appears stable but with rare swings past the Sun, suggests it will have lots of ice to sublimate into a bright tail. This also suggests the comet will survive this close approach without breaking up, since it has likely done this frequently in the past.

At the same time, the brightness of comets is unpredictable. We won’t really know how bright it will become until it is on it approach to the Sun, in the early fall of 2024.

IBEX leaves safe mode and returns to full science operations

Engineers have restored the orbiting astronomy probe IBEX out of safe mode, returning it to full science operations after a computer issue on February 18, 2023 that prevented the spacecraft from accepting commands.

To take the spacecraft out of a contingency mode it entered last month, the mission team performed a firecode reset (which is an external reset of the spacecraft) instead of waiting for the spacecraft to perform an autonomous reset and power cycle on March 4. The decision took advantage of a favorable communications environment around IBEX’s perigee – the point in the spacecraft’s orbit where it is closest to Earth.

After the firecode reset, command capability was restored. IBEX telemetry shows that the spacecraft is fully operational and functioning normally.

As I noted previously, IBEX was designed to study the boundary between the interstellar space and the solar system, and do it somehow from Earth orbit.

A confused spiral galaxy

An irregular spiral galaxy

Cool image time! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today. From the caption:

The irregular spiral galaxy NGC 5486 hangs against a background of dim, distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The tenuous disc of the galaxy is threaded through with pink wisps of star formation, which stand out from the diffuse glow of the galaxy’s bright core. While this particular galaxy has indistinct, meandering spiral arms it lies close to the much larger Pinwheel Galaxy, one of the best known examples of ‘grand design’ spiral galaxies with prominent and well-defined spiral arms. In 2006 Hubble captured an image of the Pinwheel Galaxy which was — at the time — the largest and most detailed photo of a spiral galaxy ever taken with Hubble.

This galaxy is defined I think as an irregular spiral because if you look close, you can see a very faint hint of a central bar and two large arms spiraling away at its ends. It is faint however, and might simply be caused by the human mind’s natural desire to see patterns. To my eye this galaxy could just as well be a patchy elliptical galaxy, with no arms at all.

Scientists publish their results from the impact of Dimorphos by DART

Seconds after impact
Seconds after impact. Click for movie, taken by amateur
astronomer Bruno Payet from the Réunion Island.

Scientists today published five papers outlining their results from the impact of Dimorphos by DART, summed up as follows:

  • Dimorphos’s density is about half that of Earth’s, illustrating its rubble pile nature.
  • The orbital period around the larger asteroid Didymos was changed by 33 minutes.
  • The ejection of material from Dimorphos during the impact had a greater effect on the asteroid’s momentum than the impact itself
  • The mass ejected was only 0.3 to 0.5% of Dimorphos’s mass, showing that the asteroid was not destroyed by the impact.
  • The impact turned Dimorphos into an active asteroid, with a tail like a comet.

The data not only tells us a great deal about this asteroid binary itself, it suggests that this impact method might be of use in defending the Earth from an asteroid impact. There are caveats however. First, the orbital change was not to the system’s solar orbit, the path that would matter should an asteroid threaten the Earth, but to Dimorphos’s orbit around its companion asteroid. We don’t yet know the effect on the solar orbit. Second, the impact did not destroy this small rubble pile asteroid, which means such an asteroid might still be a threat to the Earth even after impact. Third, in order for an impact to be the right choice for planetary defense, detailed information about the target asteroid has to be obtained. Without it such an impact mission might be a complete waste of time.

The irony to all this is that we knew all this before the mission. DART in the context of planetary defense taught us nothing, so NASA’s claim that this mission was to learn more about planetary defense was always utter bunkum. The mission’s real purpose was the study of asteroids, but selling it that way was hard. The sizzle of planetary defense however was a better lobbying technique, and it worked, even if it was dishonest.

That the press was also fooled by it, and continues to be fooled by it, is a subject for a different essay.

Galaxies afloat in space

Galaxies afloat in space
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today. It is part of a survey project studying what the press release calls “jellyfish galaxies,” spiral galaxies that have long extended arms.

As jellyfish galaxies move through intergalactic space they are slowly stripped of gas, which trails behind the galaxy in tendrils illuminated by clumps of star formation. These blue tendrils are visible drifting below the core of this galaxy, and give it its jellyfish-like appearance. This particular jellyfish galaxy — known as JO201 — lies in the constellation Cetus, which is named after a sea monster from ancient Greek mythology. This sea-monster-themed constellation adds to the nautical theme of this image.

On the lower left is what the press release calls an elliptical galaxy, probably because it has no obvious arms. It is however shaped more like a spiral galaxy, since ellipticals tend to be spherical. If you look close you will also notice at least five-plus other galaxies in this picture, all smaller either because they are much farther away or are simply much smaller.

Many carbon-based molecules identified in Ryugu samples

Researchers in Japan, Europe, and the U.S. have now identified many carbon-based molecules in the Ryugu samples brought back to Earth by Japan’s Hayabusa-2 asteroid probe. From their paper, published in Science yesterday:

We identified numerous organic molecules in the Ryugu samples. Mass spectroscopy detected hundreds of thousands of ion signals, which we assigned to ~20,000 elementary compositions consisting of carbon, hydrogen, nitrogen, oxygen, and/or sulfur. Fifteen amino acids, including glycine, alanine, and α-aminobutyric acid, were identified. These were present as racemic mixtures (equal right- and left-handed abundances), consistent with an abiotic origin. Aliphatic amines (such as methylamine) and carboxylic acids (such as acetic acid) were also detected, likely retained on Ryugu as organic salts.

The presence of aromatic hydrocarbons, including alkylbenzenes, fluoranthene, and pyrene, implies hydrothermal processing on Ryugu’s parent body and/or presolar synthesis in the interstellar medium. Nitrogen-containing heterocyclic compounds were identified as their alkylated homologs, which could have been synthesized from simple aldehydes and ammonia. In situ analysis of a grain surface showed heterogeneous spatial distribution of alkylated homologs of nitrogen- and/or oxygen-containing compounds.

The large number of carbon-based molecules is not unlike data from similar carbonaceous chondrite meteorites, though the differences appear to suggest Ryugu experienced chemical processes in connection with water during its lifetime.

Note for clarity: Organic molecules are not life. This is a term scientists use for any carbon-based molecule.

Astronomers discover dwarf binary star system invisible to the human eye

Using the infrared instrument on the Keck telescope in Hawaii, astronomers have discovered a dwarf binary star system invisible to the human eye, with the tightest orbit ever seen.

The two stars are so close that it takes them less than one Earth day to revolve around each other; each star’s “year” lasts just 17 hours.

The newly discovered system, named LP 413-53AB, is composed of a pair of ultracool dwarfs, a class of very low-mass stars that are so cool that they emit their light primarily in the infrared, making them completely invisible to the human eye. They are nonetheless one of the most common types of stars in the universe.

Previously, astronomers had only detected three short-period ultracool dwarf binary systems, all of which are relatively young — up to 40 million years old. LP 413-53AB is estimated to be billions of years old — similar in age to our Sun — but has an orbital period that is about four times shorter than all the ultracool dwarf binaries discovered so far.

The two stars’ mutual orbit generally places them only about 600,000 miles apart. For comparison, the Moon orbits the Earth at a distance of 240,000 miles.

Webb spots massive galaxies in the early universe that should not exist at that time

The uncertainty of science: Astronomers using the Webb Space Telescope have identified six galaxies that are far too massive and evolved to have formed so quickly after the Big Bang.

The research, published today in Nature, could upend our model of the Universe and force a drastic rethink of how the first galaxies formed after the Big Bang. “We’ve never observed galaxies of this colossal size, this early on after the Big Bang,” says lead researcher Associate Professor Ivo Labbé from Swinburne University of Technology.

“The six galaxies we found are more than 12 billion years old, only 500 to 700 million years after the Big Bang, reaching sizes up to 100 billion times the mass of our sun. This is too big to even exist within current models.

You can read the paper here [pdf]. The “current models” Labbé is referring to are all the present theories and data that say the Big Bang occurred 13.7 billion years ago. These galaxies, however, found less than a billion years after that event, would have needed 12 billion years to have accumulated their mass.

If confirmed, these galaxies essentially tell us that the Big Bang is wrong, or very very VERY incomplete, and that all the data found that dates its occurrence 13.7 billion years ago, based on the Hubble constant, must be reanalyzed.

It is also possible these galaxies are actually not galaxies, but a new kind of supermassive black hole able to form very quickly. Expect many scientists who are heavily invested in the Big Bang to push for this explanation. It might be true, but their biases are true also, which means that Webb is presenting us with new data that calls for strong skepticism of all conclusions, across the board.

NASA signs deal to launch Israel’s first space telescope mission

NASA today announced that it has agreed to provide the launch opportunity for Israel’s first space telescope, dubbed the Ultraviolet Transient Astronomy Satellite (ULTRASAT), designed to make wide-field ultraviolet observations from geosynchronous orbit.

Led by the Israel Space Agency and Weizmann Institute of Science, ULTRASAT is planned for launch into geostationary orbit around Earth in early 2026. In addition to providing the launch service, NASA will also participate in the mission’s science program.

The press release, both from NASA and from Weizmann, was remarkably vague about how NASA will provide that launch capability. The only orbital rocket NASA has is SLS. Will ULTRASAT launch as a secondary payload on a future Artemis launch? Or will NASA buy launch services from another rocket company? The press releases did not say.

Regardless, this deal means that American taxpayers have agreed to foot the launch cost of this Israeli space telescope, in exchange for obtaining telescope time for American astronomers. Interestingly, the press releases also provided no information about how much that launch cost would be.

There has long been a need for a dedicated new ultraviolet space telescope, so this deal could be a good one for American astronomers and a worthwhile use of some of NASA’s budget. It just seems inappropriate for NASA to keep the details so secret.

VLT takes picture of exoplanet

VLT's picture of exoplanet
Click for original image.

The ground-based Very Large Telescope (VLT) in Chile has successfully taken a picture of an exoplanet four to six times larger than Jupiter that is circling its star at about the same distance as Saturn.

That picture, cropped to post here, is to the right. Other data from other observatories had suggested the star AF Leporis, 87.5 light years away, might have an exoplanet, so astronomers decided to focus VLT on it to see if it could spot it.

AF Leporis is about as massive and as hot as the sun, ESO wrote in the statement, and in addition to its one known planet the star also has a disk of debris similar to the solar system’s Kuiper Belt. AF Leporis is, however, much younger than the sun. At 24 million years old, it is about 200 times younger than our star. This young age makes AF Leporis and its planetary system especially intriguing for astronomers as it can provide important insights into the evolution of our own solar system.

To snap this picture, the VLT had to use adaptive optics to smooth out the fuzziness produced by the Earth’s atmosphere, while also blocking out the star’s own light (as shown by the black disk in the image).

A galaxy’s structure of gas and dust, as seen in the infrared by Webb

NGC 1433 as seen in the infrared
NGC 1433 as seen in the infrared. Click for original image.

Scientists have now released 21 papers on the gas and dust structures in nearby galaxies, based on infrared images from the Webb Space Telescope, used in collaboration with other telescopes looking in other wavelengths.

The largest survey of nearby galaxies in Webb’s first year of science operations is being carried out by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, involving more than 100 researchers from around the globe. The Webb observations are led by Janice Lee, Gemini Observatory chief scientist at the National Science Foundation’s NOIRLab and affiliate astronomer at the University of Arizona in Tucson.

The team is studying a diverse sample of 19 spiral galaxies, and in Webb’s first few months of science operations, observations of five of those targets – M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433 – have taken place.

The image to the right is Webb’s infrared image of NGC 1433, estimated to be 46 million light years away. The bright areas extending outward in the spiral arms are believed to be star-forming regions. From the caption:

At the center of the galaxy, a tight, bright core featuring a unique double ring structure shines in exquisite detail with Webb’s extreme resolution. In this case, that ‘double ring’ is actually tightly wrapped spiral arms that wind into an oval shape along the galaxy’s bar.

NGC 1433 is a Seyfert galaxy, which are typically relatively close to Earth and has a supermassive black hole at the center eating material at a high rate. The brightness and lack of dust in the MIRI image of NGC 1433 could hint at a recent collision with another galaxy.

When comparing Webb’s infrared view with Hubble’s optical view, taken in 2014 and found here, the differences are definitely striking. Webb sees the gas and dust that is dark in Hubble’s images, while Hubble sees things at much higher resolution and thus sees more fine detail.

For only 7th time, searchers find meteorite immediately after fall

For only 7th time, searchers on February 15th found a fragment of a meteorite that had only fallen to Earth three days before, and was furthermore only discovered mere hours before it entered the Earth’s atmosphere.

From the tweet of the discoverers:

FRIPON/Vigie-Ciel finds a fragment of asteroid 2023CX1 in Seine Maritime!!! The discovery was made by Loïs Leblanc, an 18-year-old student, part of the field research team.

Vigie-Ciel (“Sky Watchers”) and FRIPON are a volunteer project that searches for meteorites. The asteroid itself was discovered by Hungarian astronomer Krisztián Sárneczky while doing routine survey scan for near Earth asteroids.

The find was the second time Sárneczky has spotted an asteroid just hours before it broke apart in Earth’s atmosphere as a fireball, following an incredible find in March 2022.

By finding meteorites this quickly after arrival scientists get a more pristine sample, since the asteroid has not been exposed to the Earth’s environment for any extended length of time.

Trio of colliding galaxies

Trio of colliding galaxies
Click for original image.

Cool image time! The picture above, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today. From the caption:

Three galaxies stand together just right of centre. They are close enough that they appear to be merging into one. Their shapes are distorted, with strands of gas and dust running between them. Each is emitting a lot of light. Further to the left is an unconnected, dimmer spiral galaxy. The background is dark, with a few smaller, dim and faint galaxies and a couple of stars.

Astronomers estimate the colliding galaxies are about 50,000 light years from each other, which for galaxies is quite close. Eventually gravity will cause all three to merge into a single very large galaxy, its shape distorted by the merger. What that shape will be is one of the things astronomers are trying to figure out. At present their theories for galaxy evolution states that as galaxies grow by absorbing smaller nearby neighbors, they evolve from spirals to ellipticals, giant blobs lacking a distinct obvious structure.

Space Force to do major cleanup of diesel fuel spill on Hawaiian mountaintop

Space Force officials yesterday announced that it will to do major cleanup of the diesel fuel spill that occurred on the top of the mountain Haleakala on the Hawaiian island of Maui last week.

The plan is to remove about 200 cubic yards of fuel-tainted soil, test the base of the dig, and then determine if more soil has to be removed.

The official making this announcement apologized repeatedly for the spill, so much so it was almost as if he was on his face on the ground, kow-towing. It of course made no difference. The leftist race-baiters in Hawaii made it clear where they stood on the matter.

On Friday, the Hawaiian rights group Kākoʻo Haleakalā called for the removal of all telescopes from the peak of Haleakala. The military “showcased their incompetence and lack of human decency when they allowed more than 700 gallons of diesel fuel to be spilled atop Haleakalā,” the group said in a statement.

“This is just the most recent example of how U.S. imperialism and military hegemony is protected in the Pacific while Hawaiians are ignored and our ʻāina is violated,” the statement said, using the Hawaiian term for land.

Let me translate: “We hate whites and America, and we want you out of Hawaii, now. And if you don’t go, we want you to cede all control to us, so that we treat you as the inferior beings we consider you to be.”

Note too that this group’s agenda is identical to the agenda of the race-baiters on the Big Island who are blocking construction of the Thirty Meter Telescope and are forcing the removal of telescopes there.

Galaxies without end

Webb infrared image of galaxies without end
Click for original image.

Cool image time! The mid-infrared picture to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope during its commissioning process last year shortly after launch, and was used to calibrate the Near-InfraRed Imager and Slitless Spectrograph (NIRISS) instrument, the very same instrument that for the past two weeks was not in operation because a cosmic ray had scrambled its software, requiring a reboot to fix it. From the caption:

The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046648, it is situated a little over a billion light-years from Earth, in the constellation Hercules.

While the large spiral is majestic, the tiny galaxy smudges are actually more important. Astronomers are right now scrambling to determine their distance and age in order to better understand what the universe was like, thirteen-plus billion years ago. So far the Webb data of these very early galaxies suggests that in this early universe there were many more fully formed galaxies, similar to ones we see in our time, than any theory of the Big Bang had predicted.

Astronomers discover twelve more Jupiter moons

In reviewing ground-based data from 2021 and 2022, astronomers have discovered another twelve Jupiter moons, bringing that planet’s total moon population to 92.

All of the newly discovered moons are small and far out, taking more than 340 days to orbit Jupiter. Nine of the 12 are among the 71 outermost Jovian moons, whose orbits are more than 550 days. Jupiter probably captured these moons, as evidenced by their retrograde orbits, opposite in direction to the inner moons. Only five of all the retrograde moons are larger than 8 kilometers (5 miles); Sheppard says the smaller moons probably formed when collisions fragmented larger objects.

One newly discovered moon, dubbed Valetudo, is about 3,000 feet across and orbits in a retrograde orbit that crosses the orbits of several other moons that orbit in the opposite direction. As the article notes, “This highly unstable situation is likely to lead to head-on collisions that would shatter one or both objects.”

Webb instrument back in operation

Engineers have returned NIRISS, the near infrared spectrograph instrument on the Webb Space Telescope, to full operation after rebooting its software and determining the cause of the problem.

On Jan. 15, NASA’s James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (NIRISS) experienced a communications delay within the science instrument, causing its flight software to time out. Following a full investigation by NASA and Canadian Space Agency (CSA) teams, the cause was determined to likely be a galactic cosmic ray, a form of high-energy radiation from outside our solar system that can sometimes disrupt electrical systems. Encountering cosmic rays is a normal and expected part of operating any spacecraft. This cosmic ray event affected logic in the solid-state circuitry of NIRISS electronics known as the Field Programmable Gate Array. Webb engineers determined that rebooting the instrument would bring it back to full functionality.

After completing the reboot, NIRISS telemetry data demonstrated normal timing, and to fully confirm, the team scheduled a test observation. On Jan. 28, the Webb team sent commands to the instrument to perform the observation, and the results confirmed on Jan. 30 NIRISS is back to full scientific operations.

Engineers actually have a name for such cosmic ray incidents that effect software. They call it a bitflip.

Viewing the Green Comet

Link here. Though there has been much hype about this comet, which has a 50,000 year orbit as well as an unusual color, it really doesn’t deserve that hype because it will barely become bright enough to be visible to the naked eye.

Nonetheless, in the northern hemisphere it will be in the sky all night during the month of February, so if you are in a good dark sky location, you should try to spot it. On February 1st it will be closest to Earth.

According to In-the-Sky, from New York City C/2022 E3 (ZTF) is circumpolar, meaning it is permanently above the horizon, and should therefore be visible for most of the night. It will be visible in the Camelopardalis constellation while at perigee, a large but faint area of sky devoid of bright stars and located close to the north celestial pole.

The comet will become visible at around 6:49 p.m. EST (2349 GMT) on Wednesday (Feb. 1) when it will be 49 degrees over the northern horizon. C/2022 E3 (ZTF) will climb to its highest point in the sky, 58 degrees over the northern horizon, at around 9:46 p.m. EST (0246 GMT). Following this it will disappear in the dawn light at around 5:57 a.m. EST (1057 GMT) on Feb. 2 while at around 30 degrees over the horizon to the north.

The link provides more information for finding it, which will likely be seen best with binoculars.

The twin asteroid Janus probes, stranded by Psyche delay, might go to Apophis

Apophis' path past the Earth in 2029
A cartoon showing Apophis’s path in 2029

The science team that built the twin Janus spacecraft, designed to fly past an asteroid but stranded when its launch got canceled, are now considering the potentially dangerous asteroid Apophis as a new target.

If the Janus spacecraft can find a ride by early 2028, scientists could use one or both of the spacecraft to scout out the large asteroid Apophis before its super-close approach to Earth in April 2029. (If only one spacecraft visits Apophis, scientists would see only about half of the asteroid but could send the second spacecraft elsewhere; if both spacecraft fly past the same object they can be arranged to reveal the whole surface.)

Initially the entire Janus mission had been designed on the assumption it would launch as a secondary payload when the Psyche mission to the asteroid Psyche launched last fall. When that launch had to be canceled because Psyche was not ready, Janus lost its mission. The science team has since been struggling to find a replacement, handicapped by the fact that it must go as a secondary payload.

There is a serious issue however with arriving ahead of Apophis’s close approach in 2029. The science community has discouraged such missions, because they fear a spacecraft arriving then could shift Apophis’s trajectory and actually increase the chance it will hit the Earth during a later close approach. Instead, all planetary probes presently going to Apophis in 2029 are planning to arrive after the flyby.

The risk is extremely small, but it must be considered before sending Janus to Apophis.

Communications issue shuts down one of Webb’s instruments

The near infrared instrument on the Webb Space Telescope, NIRISS, has been unavailable for science observations for more than a week due to a communications issue.

On Sunday, Jan. 15, the James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (NIRISS) experienced a communications delay within the instrument, causing its flight software to time out. The instrument is currently unavailable for science observations while NASA and the Canadian Space Agency (CSA) work together to determine and correct the root cause of the delay.

According to the update, the instrument’s hardware, as well as the rest of the telescope, has been unaffected and remains in good condition.

In November the telescope’s mid-infrared instrument MIRI experienced its own problems with one of its “grating wheels” that allows it to some spectroscopy. Since then the instrument has been in use, but it is unclear if the issue was resolved or observations have had to be adjusted to avoid the problem.

Construction of the Thirty Meter Telescope in Hawaii remains in limbo

Despite the successful power grab by protesters that stopped construction and took management of the telescopes on Mauna Kea in Hawaii away from the University of Hawaii and gave it to a newly created board made up of “observatory representatives, Native Hawaiian cultural practitioners, local business and education officials, and experts in land management,” construction of the Thirty Meter Telescope (TMT) in Hawaii remains in limbo.

But there is another actor in this drama: the National Science Foundation (NSF). TMT has accrued substantial financial backing from its university backers and the governments of China, Japan, India, and Canada, but it is still far from fully funded and has asked NSF to fill the gap. TMT’s request has come in partnership with the Giant Magellan Telescope (GMT), another U.S.-led effort to build a massive new telescope. GMT’s site is already being prepared in Chile but it is also in financial straits.

Together, the two projects are seeking $3 billion from NSF in exchange for the wider U.S. astronomical community gaining access to a large slice of both scopes’ observing time. That proposal was judged by U.S. astronomers as their top priority for ground-based astronomy in the community’s decadal survey published in November 2021. NSF is now assessing whether this is a good investment for U.S. taxpayers.

Considering that Congress now believes that money grows on trees, and there is no reason not to fund anything anyone wants no matter how much debt it produces, I expect that the NSF will eventually fund both telescopes. There is however the slim possibility that the NSF will look at the new and very complex managerial make-up now running things in Hawaii and decide it is impractical and guaranteed to produce problems. The goals of the different members of this board are so contradictory that any construction on Mauna Kea will likely have to be renegotiated over and over again, causing further delays.

Of course, endless funding and delays could be considered a feature, not a bug, by our present corrupt federal government. In that case the NSF will celebrate these delays.

1 5 6 7 8 9 67