Arianespace launches JUICE mission to Jupiter

Arianespace early today used its Ariane-5 rocket, on its next-to-last launch, to send the European Space Agency’s (ESA) JUICE mission on its way to Jupiter to study its large moons.

It will take eight years for JUICE to get to Jupiter, using flybys of the Earth, Moon, and Venus along the way. This journey might also include a flyby of an asteroid, depending on orbital mechanics and the spacecraft’s condition.

Once at Jupiter it will, from ’31 to ’34, do thirty-five flybys of the Ganymede, Callisto, and Europa, and then enter orbit around Ganymede for most of 2035, before being sent to crash onto the planet to end its mission.

Ariane-5 meanwhile has one more launch, in June. After this Arianespace will not at present have an active large rocket, as its Ariane-6 replacement is not yet flying, its maiden flight presently scheduled for the fourth quarter of this year.

This was also Europe’s first launch in 2023, so it does not get listed on the leader board. The leaders of the 2023 launch race are as follows:

23 SpaceX (with a launch scheduled for tonight)
15 China (with a launch scheduled for tomorrow)
6 Russia
3 Rocket Lab

American private enterprise still leads China 26 to 15, but is now tied with the entire world combined 26 all.

Spain’s government officially establishes a Spanish space agency

Spain’s Council of Ministers has voted to officially established a Spanish space agency, with operations beginning on March 7, 2023 with an initial budget of $753 million.

This announcement comes only a month before the private Spanish company, PLD, attempts its first suborbital launch from a Spanish spaceport of its Miura-1 rocket, its first stage designed to come back to Earth by parachute, recovered, and then reused. If successful the company hopes to then develop an orbital version.

The news from Europe increasing suggests that the members of the European Space Agency (ESA) are beginning to go their own way, relying less upon it. In addition to these developments in Spain, Germany now has three private companies developing rockets while Italy’s government has provided $308 million to its own Italian rocket company Avio. The United Kingdom meanwhile has had its own space agency for several years, is building several spaceports, and has been trying to develop its own space industry, with very mixed results. In addition, both Norway and Sweden are building spaceports for commercial operations.

ESA, while mouthing support for commercial space, has so far not done well in the past decade in transitioning from a government run, built, and owned operation to one owned by commercial companies. Its new Ariane-6 rocket, built and controlled by ArianeGroup but heavily managed by ESA, is still too expensive to compete with the new commercial rockets from the U.S. Nor does it appear ESA is moving very fast to fix this situation. It appears many people in Europe have recognized this state of affairs, and are looking for alternatives.

Italy funds development by Avio of smallsat rocket and methane engine

In a move that might eventually separate Italy from the European Space Agency’s (ESA) Arianespace commercial division, the Italian government on March 13, 2023 announced that it has committed $308 million to the Italian company Avio to develop both a methane-fueled engine and the smallsat rocket to go with it.

The money will be used by Avio on two projects, one to develop an upgraded version of its M10 methane-fueled engine that has already completed two dozen static fire tests, and the other to develop the smallsat rocket, with a targeted first launch in 2026.

While the investment is officially in partnership with the ESA, its wholly-Italian nature suggests in the end it will not be part of Arianespace, but function as an independent competing rocket operated and owned by Avio, which is also the company that developed Arianespace’s Vega family of rockets.

If Italy allows Avio to pull free of ESA and operate as a separate competing rocket company, it will do Europe a favor. Right now the monopolistic nature of ESA is preventing it from competing successfully in the new commercial launch market. Having separately owned and competing private companies will only energize this European industry, which has generally been moribund for years.

ESA attributes Vega-C launch failure to faulty nozzle from the Ukraine

The European Space Agency (ESA) has concluded that the launch failure of the second stage of Arianespace’s Vega-C rocket on December 20, 2022 was caused by a faulty nozzle produced by a company in the Ukraine.

[T]he Commission confirmed that the cause was an unexpected thermo-mechanical over-erosion of the carbon-carbon (C-C) throat insert of the nozzle, procured by Avio in Ukraine. Additional investigations led to the conclusion that this was likely due to a flaw in the homogeneity of the material.

The anomaly also revealed that the criteria used to accept the C-C throat insert were not sufficient to demonstrate its flightworthiness. The Commission has therefore concluded that this specific C-C material can no longer be used for flight. No weakness in the design of Zefiro 40 has been revealed. Avio is implementing an immediate alternative solution for the Zefiro 40’s nozzle with another C-C material, manufactured by ArianeGroup, already in use for Vega’s Zefiro 23 and Zefiro 9 nozzles.

The press release goes to great length to reassure everyone that these Ukrainian nozzles are still flightworthy, that the fix is merely changing the material used in the nozzle’s throat insert.

ESA invites private companies to build lunar satellites for communications and navigation

Capitalism in space: The European Space Agency (ESA) has now invited European and Canadian companies to build the lunar communications and navigation satellites that will be needed to serve the many future manned and unmanned missions presently being planned by the U.S. and Europe.

Under its Moonlight programme, ESA is inviting space companies to create these lunar services.

By acting as an anchor customer, ESA is enabling space companies involved in Moonlight to create a telecommunication and navigation service for the agency, while being free to sell lunar services and solutions to other agencies and commercial ventures.

Once Moonlight is in place, companies could create new applications in areas such as education, media and entertainment – as well as inspiring young people to study science, technology, engineering and maths, which creates a highly qualified future workforce.

According to the press release, almost 100 companies have already expressed interest.

It is however unclear how much freedom the companies will have in designing and creating these satellites, based on ESA’s own descriptions of the project. It appears that ESA wants to design them, and is simply looking for private companies to build them. Under this arrangement, ownership will not belong to the companies, even if they are given the freedom to make money selling the capability to others. In fact, past history suggests that in the end, ESA will eventually retract this part of the deal, because of its desire to fully control the satellites it designed.

ESA successfully unfurls solar sail from cubesat

The European Space Agency (ESA) has successfully unfurled a solar sail from a cubesat in order to test using that sail to help de-orbit that cubesat more quickly.

The sail was deployed from a package measuring 3.93 by 3.93 by 3.93 inches (10 by 10 by 10 centimeters). The unfurling process was captured by an integrated camera onboard the Ion satellite carrier, which is operated by the Italian company D-Orbit.

The satellite will eventually burn up in the atmosphere, providing a quicker, residue-free method of disposal, according to ESA.

A short video of that unfurling can be viewed here.

This flight was intended as a proof of concept. Thus, ESA like many similar NASA test projects will now close the project down, which is dubbed ADEO, having no specific plans to do anything with what was learned. Private cubesat companies, however, might adopt this solar sail deployment technology, but I suspect less for de-orbit purposes but instead as a method of maneuvering their satellite in orbit.

Arianespace’s chief condemns the idea of independent private European rocket companies

Stéphane Israël, the head of Arianespace, the European Space Agency’s (ESA) commercial rocket division, yesterday strongly condemned the idea of allowing independent private European rocket companies to develop and compete with his government operation.

“It is not possible to copy-paste the US model,” he said. “It is not possible. The level of space spending in the United States is five times higher than in Europe, and the private capital is not the same. So if the answer is to say let’s do what the US has done, I think we will not manage to do it.”

Moreover, Israël said the European Space Agency must resist supporting microlaunchers to the point where these companies might compete with the existing capabilities.

“A huge mistake would be that this focus on microlaunchers destabilizes Ariane 6 and Vega C—it would be a historic mistake,” he said. “Microlaunchers can be of support to boost innovation. But we should not make any confusion. This launcher will never give autonomous access to space to Europe. They’re on a niche market representing maybe 10 percent of the market, and less than that when it comes to European needs.”

He said this in Brussels at the 15th European Space Conference, where it appears he was trying to convince the ESA to block any competition with Arianespace.

Israël might say this, but not only has his track record in predicting the success of commercial space in the U.S. been bad, other European governments are not taking his advice. Both Germany and the United Kingdom have several rocket startups gearing up for their first launches this year, with others in Spain and France not far behind. Moreover, Israël doesn’t have much to offer in competition. Arianespace’s Vega rocket, intended to be a low cost option, has failed on three of its last eight launches. The Ariane 6 rocket is years behind schedule, and has not yet launched. And both are overpriced and cannot compete, not only with the American rocket startups but with India’s government rockets.

Moreover, those European governments have in recent years been taking control and power away from Israël and Arianespace. Unlike earlier rockets, the Ariane 6 rocket is not controlled or owned by Arianespace. Instead, it belongs to ArianeGroup, the partnership of Airbus and Safran that is building it. Arianespace’s role in operating it will be greatly limited, once it begins flying.

Voyager signs deal with Airbus to build its private space station

Voyager Space, the division of Nanoracks that has a contract with NASA for building one of four private space stations, has now signed a deal with Airbus, which will provide Voyager additional technical support.

It appears this deal is going to give Europe access to at least one of those American stations, once ISS is gone.

“We are proud to partner with Airbus Defence and Space to bring Starlab to life. Our vision is to create the most accessible infrastructure in space to serve the scientific community,” said Dylan Taylor, Chairman and CEO of Voyager Space. “This partnership is unique in that it engages international partners in the Commercial Destinations Free-Flyer program. Working with Airbus we will expand Starlab’s ecosystem to serve the European Space Agency (ESA) and its member state space agencies to continue their microgravity research in LEO.”

Unlike ISS, where profit was not a motive, Voyager has to make money on its Starlab space station. If Europe wants in, it needs to provide Voyager something, and this deal is apparently part of that contribution. I also suspect that high level negotiations occurred within NASA, ESA, and Voyager to make this deal happen so that Europe would continue to have access to at least one of the American stations.

ESA’s commitment to launch Franklin rover to Mars by ’28 will require U.S. participation

The Europeans Space Agency’s decision to spend $725 million over the next six years to launch its Rosalind Franklin rover to Mars by 2028 will not only require the United Kingdom to develop a Mars lander, it will require U.S. participation that has not yet been secured, including the donation of a launch vehicle.

The mission’s launch this year was canceled when Russia invaded the Ukraine, thus ending all of its scientific partnerships with Europe.

The mission, now slated for launch in 2028, will primarily replace the Russian components with European ones, with several exceptions. “We have expectations that the U.S. will also contribute to this, with a launcher, a braking engine and the RHUs, the radioisotope heating units,” he said. “But the majority of the future ExoMars mission is European.”

The launch rocket will be the most expensive U.S. contribution, and to get NASA to pay for the launch will require something in return from ESA, most likely guaranteed research use of the Franklin rover by American planetary scientists. Such a deal is similar to what Europe has gotten with both Hubble and Webb, where ESA contributes something and its scientists get a percentage of guaranteed observation time.

With a rover such an arrangement is more complicated, however, which is probably why the deal is not yet settled.

ESA commits more than $100 million to encouraging private space companies

Capitalism in space: The governmental officials representing all of the partners in the European Space Agency this week decided to commit $122 million to a program designed to encourage private independent and competing space companies.

This budget represented a 17% increase.

The ScaleUp programme, which has two elements, supports a company along its entire life cycle. First, it assists in the development of the enterprise with business incubation, business acceleration, intellectual property and technology transfer services (ScaleUp Innovate), and then, it facilitates the scaling up of their products on new markets (ScaleUp Invest).

ScaleUp is business-focused and not technology or sector specific and applies within all ESA programmes. This programme targets start-up companies, applied research and innovation centres, and more mature companies such as SMEs, Mid-Caps and large system integrators.

While encouraging news, the language of the press release and the size of the budget indicates that these European governments are being dragged kicking and screaming into this new capitalist aerospace world. It is clear that ESA has been losing out by sticking with its government-run and government-owned Arianespace operation. At the same time, it is also clear that ESA officials and their governments are showing the same reluctance Congress showed in the last decade when NASA wanted to transition from its government-run and -owned system. At that time, Congress consistently resisted budgeting the commercial space line in NASA’s budget, thus delaying the launch of both Dragon and Starliner significantly.

In the end the effectiveness of competition, private property, and freedom however won out in the U.S. I expect it will do the same in Europe, though it might take another decade or so before Europe’s governments realize it.

France, Germany, and Italy agree on allowing competition from European rocket startups

Capitalism in space: France, Germany, and Italy yesterday signed an agreement [pdf] whereby they agreed to push European policy-makers to allow competition from independent European rocket startups for launch contracts.

At least, this is what I think they have agreed to. I have read the article and the agreement several times, and remain somewhat unsure of their intent. The agreement is couched in the typical bureaucratic language specifically designed to obscure meaning. The article does little to clarify things.

It appears this is the key language in the agreement:

The proposed acknowledgement of operational European NewSpace micro and mini launch systems for ESA satellite launch service procurements, upon its adoption by Council, would effectively represent a first step towards an evolution of the launch service procurement policy for ESA missions as referred to in the ESA Council Resolution adopted in 2005.

What I gather is that these three countries no longer want European launch contract awards limited to the Arianespace rockets Ariane-6 and Vega-C. They want bidding opened to all European rocket startups, and they want the elimination of rules that require all contracts distributed by quota to European countries.

Germany already has three commercial rocket startups on the verge of their first launch, and apparently wants the European Space Agency to stop favoring Arianespace in launch contracts. That France and Italy are going along with this is significant, since Ariane-6 is dominated by French developers and Vega-C is dominated by Italian developers.

Rocket Factory Augsburg signs deal to use German engine test facility

Rocket Factory Augsburg (RFA), one of three German rocket startups pushing to begin test launches next year, has signed a contract with Germany’s aerospace agency DLR to use of its engine test facility for static fire tests of its Helix engine.

RFA announced the deal at the Space Tech Expo Europe in Bremen, Germany, Nov. 16, which will allow RFA to use the P2.4 test site in Lampoldshausen. DLR provides the basic infrastructure while RFA brings its own test stand and supporting infrastructure.

Test stands in Lampoldshausen have so far only been used by DLR, the European Space Agency and ArianeGroup.

The new test stand will add to RFA engine testing capacity already established in Esrange in northern Sweden, where the company has been conducting testing on the Helix engine for the RFA One launcher. Testing will continue in Sweden but the new development simplifies logistics and bureaucracy related to import and export rules. [emphasis mine]

The highlighted sentence is the news. The German government has decided to break the monopoly held by government related operations of these facilities, and open up their use to private independent commercial companies.

RFA says it already has a dozen customers, and hopes to begin commercial launches by ’24.

European nations struggle with the new private commercial space station concept

The European partners that have been doing research and work on ISS are now struggling to figure out their future on the multiple new private commercial space stations American private enterprise is now building to replace ISS.

The ISS today relies extensively on barter arrangements among participating agencies, providing services to cover their share of operations of the station. Such arrangements are unlikely to work for commercial stations, however. “We need to find a new way of cooperating,” said Nicolas Maubert, space counselor at the French Embassy in the U.S. and representative of the French space agency CNES in the U.S., citing the challenges of extending current barter arrangements to commercial stations. “We need to put on the table every option.”

The simplest approach — direct payments from space agencies to the companies operating commercial stations — could face political obstacles. “The taxpayers in Europe don’t want to pay directly to private American companies,” he said. [emphasis mine]

The highlighted words illustrate the fundamental problem. Europe on ISS has been for decades like a welfare queen. It has gotten access to space mostly free, since what it has offered in exchange for that access has never come close to matching what its work on ISS cost American taxpayers. Now that it will have to pay for that access in real dollars, some of its member nations are balking.

France for example still wants a free ride. Maubert suggested that Europe build its own space station, which means France wants its other ESA partners to help pay for the station that France wants to use.

I say, too bad. The costs on the private stations — built for profit and efficiency — will be far less that ISS. That cost will also be far far less than anything Europe might spend trying to build its own government station. Europe should bite the bullet and pay up. It won’t regret it.

ESA asks member nations to build lander for Franklin Mars rover

In its most recent request for funding from the member nations of the European Space Agency (ESA), the agency has asked the member nations to finance the design and construction of a new lander for its long delayed Rosalind Franklin Mars rover, replacing the Russian lander that had became unavailable due to sanctions resulting from Russia’s invasion of the Ukraine.

According to the BBC (opens in new tab), ESA will request 360 million euros to kickstart work on the new landing system, with additional funds likely needed in subsequent years. ESA has already spent some 1.3 billion euro on the ExoMars program, which also includes an orbiter that has been studying Mars’ atmosphere and surface since 2017. ESA will put the plan in front of delegates of its 22 member states at a ministerial conference in November.

“We will have to wait if the [member states] decide to go forward with the project,” Parker said. “This concept is now proposed as part of the director general’s package within [ESA’s] exploration program for decision at the ministerial [conference].”

If ESA’s member nations agree to this plan, expect the launch of Franklyn to be delayed further. Based on the normal pace in which ESA functions, that lander will take a minimum of five years to design and build (likely much longer). Though ESA is now targeting ’28 for the launch of Franklin, which was supposed to launch this past summer after a two year delay, this plan likely means it will not get off the ground this decade.

Meanwhile, there are now at least a half dozen private companies building lunar landers that could more quickly (and for less money) get a Franklin Mars lander built for ESA. None are in Europe however, which means ESA would rather have this mission delayed years so that it can funnel money to its own contractors..

ESA delays first Ariane-6 launch to late in 2023

The European Space Agency has once again delayed the first Ariane-6 launch, shifting it to the fourth quarter of 2023.

Even so, officials warned that this is merely “a planned date,” and that static fire tests of both the first stage and second stage must first be completed before the launch can go forward.

Ariane-6 was initially supposed to begin launching in 2020, putting it three years behind schedule. Furthermore, it has struggled to obtain customers, as it is entirely expendable and thus expensive and not competitive with SpaceX’s Falcon 9.

Since Ariane-6 is delayed and the Ariane-5 rocket’s has only a few launches left before retirement, ESA officials also noted that it has now been forced to buy two launches from SpaceX.

The launches include the Euclid space telescope and the Hera probe, a follow-up mission to NASA’s DART spacecraft which last month succeeded in altering the path of a moonlet in the first test of a future planetary defence system. “The member states have decided that Euclid and Hera are proposed to be launched on Falcon 9,” ESA Director General Josef Aschbacher told reporters after a meeting of the 22-nation agency’s ministerial council.

The launches will take place in 2023 and 2024 respectively.

The irony is that ESA is probably going to save a lot of money launching with the Falcon 9, rather than its own Ariane-6. In fact, I would not be surprised if the total SpaceX price for both launches equals one Ariane-6 launch. Furthermore, SpaceX gets this business because its own American competitors, ULA and Blue Origin, have also failed to get their new rockets flying on time.

ESA looking to SpaceX to launch Euclid space telescope

Capitalism in space: Having lost its Soyuz launch vehicle for its Euclid space telescope because of the Russian invasion of the Ukraine, the European Space Agency (ESA) is now looking at SpaceX as a possible option.

At a meeting of NASA’s Astrophysics Advisory Council, Mark Clampin, director of the agency’s astrophysics division, said his understanding is that the European Space Agency was leaning towards launching its Euclid mission on a Falcon 9 in mid to late 2023.

NASA is a partner on Euclid, a space telescope that will operate around the Earth-sun L-2 Lagrange point 1.5 million kilometers from Earth to study dark energy, dark matter and other aspects of cosmology. The 2,160-kilogram spacecraft was to launch on a Soyuz rocket from French Guiana in 2023.

Europe has for years used its own rockets for its science missions. However, right now the Falcon 9 appears the only option. The last launches of Europe’s Ariane-5 rocket are already assigned, and the new Ariane-6 rocket has not yet flown, is behind schedule, and its early launches are also already reserved.

Nor does ESA have other options outside of SpaceX. Of the rockets powerful enough to do the job, ULA’s Atlas-5 is also being retired, and the Vulcan rocket is as yet unavailable. Blue Origin’s New Glenn is years behind schedule, with no clear idea when it will finally launch.

A final decision is expected soon. ESA could either go with SpaceX, or simply delay several years until Ariane-6 is flying.

If SpaceX gets the job however it will once again demonstrate the value of moving fast in a competitive environment. While its competitors have dithered and thus do not have their rockets ready, SpaceX has been flying steadily for years, so it gets the business.

NASA and ESA sign simple lunar exploration agreement

In what appears to be an attempt by both to maintain their working relationship, even though several major European nations have not yet signed the Artemis Accords, last week NASA and ESA signed a simple agreement reaffirming their desire to work together in exploring the Moon.

Neither ESA nor NASA published the agreement, which in a photograph appeared to be little more than one page. In a Sept. 23 statement, NASA described the agreement as a “non-binding joint statement” about current and prospective future cooperation in Artemis.

Of ESA’s members, only France, Italy, Luxembourg, Poland, and the United Kingdom have signed the Artemis Accords. Thus, ESA and NASA face a conundrum. According to the accords and the NASA policy established by the Trump administration and supposedly continued under Biden, only signatories can participate in the Artemis program. Yet, most of the members of ESA have not signed, and ESA has no authority to make them do so. ESA however is building the service module for the Orion capsule — as well as other major components of Artemis — which NASA must have.

I suspect this short one page agreement is the Biden administration’s under-handed admission that — when it comes to Europe — the Artemis Accords will no longer be required.

Astrobotic gets ESA’s first commercially purchased lunar lander payload

Capitalism in space: Astrobotic yesterday announced that the European Space Agency (ESA) has purchased payload space on the company’s Griffin lunar lander for a commercially produced camera.

This is the first commercial payload ESA has purchased for a lunar mission. The camera will fly as a secondary payload on Griffin’s first mission, which will deliver NASA’s VIPER rover to the Moon’s south pole in 2024. The camera is being built by a French startup called Lunar Logistics Services.

NASA/ESA revise plan to recover Perseverance core samples from Mars

NASA and ESA yesterday announced that the agencies have revised their plan to recover Perseverance core samples from Mars, dropping the launch of a rover to pick up the samples.

Instead, they have decided to use Perseverance to bring the samples to the return vehicle, which will also carry two small helicopters.

In 2030, if all goes as planned, the NASA lander will touch down near where Perseverance is working. The rover will drive over to the lander, and an ESA-built robot arm will extract the tubes one by one and place them inside a spherical container the size of a basketball. In early 2031, a rocket on the lander will loft the container into Mars orbit, where a return craft built by ESA will snare it, enclose it in several layers of shielding for safety, and then head for home. In 2033, a saucer-shaped descent pod will carry the samples down to the Utah desert.

If Perseverance gets into difficulties during its 9-year wait for company, controllers can instruct it to drop its cargo of sample tubes onto the ground, creating a second depot. If that happens, the helicopters come into play: they can fly up to 700 meters, land next to a sample tube—each weighs up to 150 grams—and, with wheels on the bottom their feet, roll over the tube and pick it up with a grabber. On returning to the lander, they will drop the tubes on the ground for the arm to pick up.

The change means that the rover the United Kingdom was planning to build will either be abandoned, or repurposed as a lunar rover.

Ariane-6 mock-up installed at launchpad for tests

The European Space Agency yesterday announced that it has installed an Ariane-6 full scale mock-up at its launchpad in French Guiana in preparation for tank and launch procedure tests.

The Ariane 6 combined tests model is highly representative of the flight model. It consists of the core stage and the upper stage, which make up the central core, as well as three pylons shaped like the rocket’s solid boosters and a fully representative but inert mockup of the fourth booster.

The Ariane 6 combined tests model central core was precisely mated in the purpose-built launcher assembly building, where this task is carried out horizontally. Automated guidance vehicles then brought the assembled core to the launch and, working with the crane at the mobile gantry, raised it to its vertical position.

The date of the actual first launch has not been announced, though ESA has officially admitted that it will not occur this year as hoped.

Roscosmos forbids its astronauts from using Europe’s robot arm

In response to the final decision this week by the European Space Agency to officially end its cooperation with Russia on its ExoMars mission, Roscosmos today forbid its astronauts from using Europe’s new robot arm that was recently installed on the Russian Nauka module of ISS.

Russia’s crew onboard the International Space Station (ISS) will stop using the European ERA manipulator arm in response to the European Space Agency’s (ESA) refusal from cooperation on the ExoMars project, CEO of Russia’s state space corporation Roscosmos Dmitry Rogozin said on Tuesday.

“In my turn, I instruct our ISS crew to stop using the European Robotic Arm (ERA). Let [ESA Director General Josef] Aschbacher along with his boss [EU foreign policy chief Josep] Borrell fly to space and do at least something useful in their entire lives,” he wrote on his Telegram channel.

The arm was designed to work on the Russian part of ISS, so it appears this decision by Rogozin is an example of someone cutting off his nose to spite his face. It essentially reduces Russia’s capabilities on the station.

As for ExoMars, it is unclear what will happen to the lander that Russia built to put Europe’s Franklin rover on Mars. Roscosmos has said it might proceed with its own mission to Mars, using that lander, but it has not made the full commitment to do so.

Rocket Lab & ESA complete launches

Very early today from New Zealand Rocket Lab successfully launched the first of two quickly scheduled launches for the National Reconnaissance Office, designed to demonstrate its ability to achieve fast scheduling and rapid turnaround. The second launch is targeting July 22, 2022, only ten days later.

Also today the European Space Agency (ESA) successfully completed the first launch of its new upgraded Vega-C rocket, putting its prime payload (a passive test satellite) plus six cubesats into orbit. Though ESA says it will eventually hand over operations to Arianespace, its commercial arm, the rocket itself is mostly built by the Italian company Avio. Also, the rocket’s solid rocket first stage will be used as an optional side booster on the Ariane-6 rocket ArianeGroup is building for ESA.

Though ESA launched Vega-C, as it will eventually be managed by Arianespace I include it in that company’s total, which is now three launches for 2022.

The leaders in the 2022 launch race:

29 SpaceX
22 China
9 Russia
5 Rocket Lab
4 ULA

American private enterprise. now leads China 42 to 22 in the national rankings, and the entire globe 42 to 38.

Europe’s new long term space strategy calls for its own independent and competing manned program

Figure 6 from the Terrae Novae policy paper

The new colonial movement: The European Space Agency (ESA) yesterday unveiled a new roadmap for its future space effort, aimed primarily in developing an independent space program capable of launching its own astronauts and taking them to both the Moon and Mars.

The program is dubbed Terrae Novae (“New Worlds”) and aims to put European astronauts on other worlds using its own rockets and landers by the 2030s. The graphic to the right, figure 6 from the policy paper, illustrates this long term goal.

From the full document [pdf]:
» Read more

ArianeGroup chosen by Europe to develop reusable rockets

The new colonial movement: The European Commission, which makes the major decisions for the European Space Agency, has chosen the European commercial company ArianeGroup to run two programs designed to produce that continent’s first reusable rocket.

From the press release [pdf]:

The SALTO project will facilitate the first flight tests of the Themis reusable stage demonstrator in Kiruna, Sweden. The ENLIGHTEN project will speed up the development and introduction of reusable engine technologies.

The main goal of SALTO will be to develop the kind of vertical landing technology that SpaceX now does routinely. ENLIGHTEN in turn will develop rocket engines using either methane or hydrogen as the fuel. The total budget allocated for both is just under 50 million euros, which seems quite small. The press release also made no mention of a schedule for accomplishing these tasks.

Ariane-6 rocket delayed again

Capitalism in space: The first launch of ArianeGroup’s new rocket, Ariane-6, has been delayed again, and will not launch this year as planned.

The new delay appears mostly related to getting the rocket’s ground systems up and running.

The rocket, being built for the European Space Agency’s commercial division, Arianespace, had originally been scheduled for launch in 2020. Initially the rocket struggled to find customers, because it is not reusable and is thus more expensive. That changed in the past few months with the Ukraine War eliminating Russian rockets as a competitor combined with a new gigantic launch contract from Amazon to launch a large number of its Kuiper satellites using Ariane-6.

Russia proposes restart of ExoMars partnership with ESA

Russia’s aerospace corporation Roscosmos has proposed to the European Space Agency (ESA) that its partnership to launch and land ESA’s Franklin rover on Mars be renewed, despite the Ukraine War and Roscosmos’ confiscation of 36 OneWeb satellites.

[According to Roscosmos head Dmitry Rogozin] the equipment and Kazachok landing platform for the mission have the potential for launch in 2024. “ESA colleagues promised to make requests to their patrons, who are ESA member states. If they cooperate and give their consent, the mission may be implemented,” Rogozin said.

He estimates the likelihood of this scenario to be at about 708%. [sic] Roscosmos plans to get the response in late June. [emphasis mine]

It would not be surprising if ESA made this deal, despite its stupidity. Roscosmos’ actions recently, especially related to OneWeb, prove the people running it are very untrustworthy business partners. Yet Europe’s historic willingness to deal with the devil for short term gain — eventually and repeatedly leading to overall disaster — is legendary.

Astroscale to deorbit OneWeb satellites, funded by the European Space Agency

Capitalism in space: Astroscale has obtained OneWeb as a major customer for its system to safely deorbit its defunct satellites, with the work partly funded by the European Space Agency (ESA). From the ESA press release:

There are currently two options for removing end-of-life OneWeb satellites from their orbits at the end of their predicted five to six years of service. Each has been allocated enough fuel to be able to actively deorbit at the end of its useful lifetime. But, in case of failure, each has also been built with either a magnetic or a grappling fixture [designed by Astroscale], so that a servicer spacecraft could collect and actively deorbit the satellite.

The servicer spacecraft that Astroscale will build and test is called “ELSA-M” and is planned for launch in 2024. The servicer spacecraft will be the first “space sweeper” capable of removing multiple defunct satellites from their orbits in a single mission.

Following this demonstration, Astroscale will offer a commercial service for clients that operate satellite constellations in low Earth orbit, providing the technology and capability to make in-orbit servicing part of routine satellite operations by 2030.

Apparently, the ESA will pay Astroscale a little less than $16 million to install its grappling fixture on OneWeb’s satellites as well as build and fly the test ELSA-M mission. Once that flight proves the technology by removing several satellites, OneWeb will be expected to pay for Astroscale’s services, as will any other satellite customers.

This deal gives Astroscale a significant leg up on any other junk removal companies, as it getting its grappling fixture in space on many satellites. If that fixture should become standard, it will allow Astroscale to become the dominate satellite junk removal company, at least for the near future.

ESA: ExoMars will likely be delayed till ’28 at the soonest

An official of the European Space Agency (ESA) at a May 3rd science meeting announced that the launch of its ExoMars rover will likely be delayed until 2028 at the earliest because of the partnership breakup with Russia due to its invasion of the Ukraine.

Russia had been providing both the launch rocket as well as the lander on Mars.

Speaking at a May 3 meeting of NASA’s Mars Exploration Program Analysis Group (MEPAG), Jorge Vago, ExoMars project scientist at ESA, said he doubted a new lander could be ready by 2026. “It is theoretically possible, but in practice we think it would be very difficult to reconfigure ourselves and produce our own lander for 2026,” he said. “Realistically, we would be looking at a launch in 2028.”

Launching in 2028 could pose technical challenges for ExoMars. One trajectory would get the rover to Mars relatively quickly, but have it arrive just a month before dust storm seasons starts at the preferred landing site. An alternative trajectory would require traveling for more than two years to each Mars, but get the rover there six months before dust storms start.

“We have been trying very hard to convince the engineering team that the dust storm season is not death,” Vago said. “We should concentrate on making the rover more robust and able to weather a dust storm.”

There are other issues. The rover will need new radioisotope heating units, or RHUs, to provide power, since Russia will no longer providing them. If the U.S. provides, the launch for security reasons will have to take place in the U.S., which means the launch provider will have to be American.

The delay to ’28 also could cause the ExoMars rover mission to be completely changed, repurposed to become part of the sample return mission that the ESA and NASA are partnering to bring back the cached samples that Perseverance is gathering. If so, this repurposing might delay its launch to Mars even further.

ESA successfully tests controlling a robot on Earth from orbit

The European Space Agency (ESA) has successfully completed a test program, proving that an astronaut in orbit on ISS can control and operate a small robot on Earth.

Astronaut Luca Parmitano aboard the ISS [in 2019] operated the gripper-equipped ESA Interact rover in a mock lunar environment inside a hangar in Valkenburg, the Netherlands to survey rocks and collect samples. The two-hour space-to-ground test was a success, overcoming a two-way signal delay averaging more than 0.8 seconds and a data packet loss rate of 1% plus.

The value of this test is obvious. It shows that astronauts will be able to use small rovers and robots in remote operations, such as sending a probe down to the surface before landing themselves, or once on the planet sending that probe into dangerous terrain as a scout, while the astronaut stays back in safety.

At the same time, the robot used and the tasks it completed were all relatively simple. Moreover, the “mock lunar environment” was hardly realistic. A lot more work is needed before such a robot is functional in a real planetary environment.

Europe removes its science instruments from future Russian lunar missions

The Europe Space Agency (ESA) yesterday announced that because of Russia’s invasion of the Ukraine it will no longer fly any science instruments on three upcoming Russian unmanned lunar probes.

ESA will discontinue cooperative activities with Russia on Luna-25, -26 and -27. As with ExoMars, the Russian aggression against Ukraine and the resulting sanctions put in place represent a fundamental change of circumstances and make it impossible for ESA to implement the planned lunar cooperation. However, ESA’s science and technology for these missions remains of vital importance. A second flight opportunity has already been secured on board a NASA-led Commercial Lunar Payload Services (CLPS) mission for the PROSPECT lunar drill and volatile analysis package (originally planned for Luna-27). An alternative flight opportunity to test the ESA navigation camera known as PILOT-D (originally planned for Luna-25) is already being procured from a commercial service provider.

In other words, Europe is switching to the many private American companies that are developing lunar landers for NASA science instruments. It has also signed onto a Japanese lunar mission. All have payload space, and all are willing to take the cash of a new customer.

Meanwhile, this is how Dmitry Rogozin responded to this decision:

“Good riddance! One less European dame off our backs, so Russia should go far with a lighter load,”

To sum this all up, when it comes to space, the Ukraine invasion has been Russia’s loss, and everyone else’s gain. Even if the invasion were to end today, it will take at least a decade to re-establish Russia’s business ties with the west.

Unfortunately, the invasion will cost the Ukraine as well. In making the above announcement ESA officials also said that it is looking for alternatives to the Ukrainian rocket engines used in its Vega-C upper stage.

At the news conference, ESA also discussed the future of its small Vega rocket, which relies on Ukraine-built engines in its upper stage. The engines are manufactured by the Ukrainian company Yuzhmash, which is based in the tech city of Dnipro. Although Dnipro has been under heavy bombardment, there have been no official reports so far about damage to Yuzhmash. It is, however, clear that ESA doesn’t expect to continue its partnership with the company in the future. “We now have sufficient engines for 2022 and 2023,” Aschbacher said. “We are working on options for 2024 and onwards based on different technologies.”

Daniel Neuenschwander, ESA’s director of space transportation, added: “We are working on engine opportunities within Europe and outside of Europe, which are either tested or, even better, already existing and fully qualified.”

Whether ESA completely breaks off its partnership with the Ukraine however is not certain. Should the war continue to favor the Ukraine, then it could be that partnership will continue. Only time will tell. Right now, it is simply prudent for ESA to look for more stable alternatives.

1 3 4 5 6 7 15