New Hubble images to celebrate its upcoming 25th anniversary

The Space Telescope Science Institute (STScI) that operates the Hubble Space Telescope yesterday released two spectacular new images at the January meeting of the American Astronomical Society.

They also announced new data from Hubble that suggests a major eruption had occurred at the center of the Milky Way about two million years ago.

Eta Carinae’s next big show

Astronomers are gearing up to observe the next binary fly-by of Eta Carinae’s companion star over the next few weeks.

A binary system, η Carinae has two stars that swing past one another every 5.5 years. The bigger star — some 90 times the mass of the Sun — is incredibly unstable, always seemingly on the verge of blowing up. When the smaller companion star makes its closest approach to the primary star, as is happening now, the interaction between the two triggers violent changes in the high-energy radiation pouring out of the system.

Astronomers are watching the show in the hope of learning what drives this enigmatic system. In the 1840s, η Carinae had a mysterious eruption; in recent decades, it has again brightened unexpectedly. “The star is in an awfully deranged state, and no one knows why,” says Kris Davidson, an astronomer at the University of Minnesota in Minneapolis.

Eta Carinae is also famous because it was one of the first objects imaged by Hubble after its repair in 1993, and was thus the first stellar explosion ever caught on camera in a visually sharp and clear manner. (See my book The Universe in a Mirror for that fascinating story.)

A Hubble Space Telescope status report

Five years after the last shuttle repair mission, the Hubble Space Telescope continues to operate almost perfectly.

Jeletic said other than a single gyro failure, the observatory is operating in near-flawless fashion five years after the final shuttle crew departed. “Batteries are fine, solar arrays are fine, all the communications equipment is fine, we don’t see any glitches with the computers, the instruments are all fine,” he said. “In fact, an interesting statistic, the Advanced Camera for Surveys, which was repaired by the astronauts during the last servicing mission, that’s actually now run longer on the repair than it did originally for the Wide Field Camera part of it.”

The ACS, like the repaired Space Telescope Imaging Spectrograph, no longer has any internal redundancy. “It’s amazing. It truly is,” Jeletic said. “Given all the things that can fail, a lot of people were hoping for one or two years of continued work with it. Now we’ve gotten over five.” Likewise, the Space Telescope Imaging Spectrograph, which also is operating in “single-string” mode, is still going strong.

When they completed the 2009 servicing mission, the goal was to give Hubble five more years of operation. They’ve done that, and are now looking to keep the telescope going till at least 2020, marking 30 years in orbit.

The only issue, not surprisingly, is the failure of one of the six gyros on board. These have traditionally been the telescope’s biggest problem, and have been replaced twice over during shuttle missions. Three of today’s six however are using a new design which will hopefully extend their life significantly.

Hubble to search for Kuiper Belt targets for New Horizons

After completing a preliminary search for potential Kuiper Belt objects which the Pluto probe New Horizons might visit, scientists have decided to use the space telescope for a deeper more complete search.

As a first step, Hubble found two KBOs drifting against the starry background. They may or may not be the ideal target for New Horizons. Nevertheless, the observation is proof of concept that Hubble can go forward with an approved deeper KBO search, covering an area of sky roughly the angular size of the full Moon. The exceedingly challenging observation amounted to finding something no bigger than Manhattan Island, and charcoal black, located 4 billion miles away.

More here.

The astronomers who allocate time on the Hubble Space Telescope have decided to devote a large block for finding a Kuiper Belt object that the probe New Horizons might fly past.

The astronomers who allocate time on the Hubble Space Telescope have decided to devote a large block for finding a Kuiper Belt object that the probe New Horizons might fly past.

This allocation is still contingent upon a test observation to see if Hubble will be able to spot enough objects to make the long observations worthwhile.

Hubble spots an asteroid spout six comet-like tails.

Hubble spots an asteroid spout six comet-like tails.

Astronomers viewing our solar system’s asteroid belt with NASA’s Hubble Space Telescope have seen for the first time an asteroid with six comet-like tails of dust radiating from it like spokes on a wheel. Unlike all other known asteroids, which appear simply as tiny points of light, this asteroid, designated P/2013 P5, resembles a rotating lawn sprinkler. Astronomers are puzzled over the asteroid’s unusual appearance.

Hubble has taken a spectacular close-up image of the Horsehead Nebula.

A horsehead of another color: Hubble has taken a spectacular close-up image of the Horsehead Nebula.

Also, if you want to find out exactly how powerful Hubble is in comparison with both ground-based and other space telescopes, check out the video provided by this press release for the new images by the Herschel Space Telescope of the Horsehead Nebula that were also released today. Herschel, which works in the far-infrared, produces good data and information that Hubble cannot, but its imagery cannot compare.

Scientists are going to use Hubble to take six more deep field images.

This will be cool: Scientists are going to use Hubble to take six more deep field images.

The Hubble Space Telescope’s iconic “Deep Field” photo wowed the world in 1996 by revealing a huge collection of galaxies hiding inside a patch of the sky that looked like nothing more than blank space. Now NASA plans to image six more “empty” bits of sky for a whole new set of deep fields that could revolutionize astronomy once again. …

Since the original photo’s release, Hubble looked even longer at the same spot to create the “Ultra Deep Field” in 2004 and then the “eXtreme Deep Field” in 2012. But the new effort, called Hubble Frontier Fields, will be the first to try a similar technique on some new areas of the heavens. These photos won’t go quite as deep as the Ultra Deep Field, but will represent some of the deepest images of the universe ever taken.

Though I repeatedly challenged them at press conferences, too many astronomers claimed in 1996 that the first Hubble Deep Field was representative of the heavens, something that seemed unlikely considering how little of the heavens this one image saw. These new deep fields will help confirm — or disprove — that claim.

The military has given NASA two Cold War era spy space telescopes with mirrors comparable to Hubble’s.

Big news: The military has given NASA two Cold War era spy space telescopes with mirrors comparable to Hubble’s.

They have 2.4-meter (7.9 feet) mirrors, just like the Hubble. They also have an additional feature that the civilian space telescopes lack: A maneuverable secondary mirror that makes it possible to obtain more focused images. These telescopes will have 100 times the field of view of the Hubble, according to David Spergel, a Princeton astrophysicist and co-chair of the National Academies advisory panel on astronomy and astrophysics.

Since astronomers have over the past dozen years been remarkably uninterested in launching a replacement for Hubble, they now find themselves in a situation where they might have no optical capabilities at all in space. Hubble is slowing dying from age, and NASA doesn’t have the money to build a new optical space telescope, especially since with any new space telescope proposal the astronomical community has had the annoying habit of demanding more sophistication than NASA can afford.

This announcement however might just save astronomy from becoming blind. Because these spy telescopes are already half built, it will be difficult to add too many bells and whistles. Hire a launch rocket, build the cameras and spectrographs based on the instruments already on Hubble, and get the things in orbit quickly.

The most distant supernova discovered so far.

The most distant supernova discovered so far.

SN Primo is the farthest Type Ia supernova whose distance has been confirmed through spectroscopic observations. The supernova was discovered as part of a three-year Hubble program to survey faraway Type Ia supernovae, enabling searches for this special class of stellar explosion at greater distances than previously possible. The remote supernovae will help astronomers determine whether the exploding stars remain dependable distance markers across vast distances of space in an epoch when the cosmos was only one-third its current age of 13.7 billion years.

The coming blindness of astronomy

Fried Egg Nebula

The European Southern Observatory today released this infrared image today of what astronomers have named the Fried Egg Nebula. Taken by the Very Large Telescope in Chile, the picture shows the concentric dust shells surrounding a post-red supergiant star, thought to be transitioning to the next stage of stellar evolution called a yellow hypergiant. As the press release explains,

The monster star, known to astronomers as IRAS 17163-3907, has a diameter about a thousand times bigger than our Sun. At a distance of about 13 000 light-years from Earth, it is the closest yellow hypergiant found to date and new observations show it shines some 500 000 times more brightly than the Sun. . . . If the Fried Egg Nebula were placed in the centre of the Solar System the Earth would lie deep within the star itself and the planet Jupiter would be orbiting just above its surface. The much larger surrounding nebula would engulf all the planets and dwarf planets and even some of the comets that orbit far beyond the orbit of Neptune. The outer shell has a radius of 10 000 times the distance from the Earth to the Sun.

Yellow hypergiants are in an extremely active phase of their evolution, undergoing a series of explosive events — this star has ejected four times the mass of the Sun in just a few hundred years. The material flung out during these bursts has formed the extensive double shell of the nebula, which is made of dust rich in silicates and mixed with gas.

According to the science paper [pdf] describing this research, the stage of yellow hypergiants is a preliminary to the star evolving into a luminous blue variable, of which Eta Carinae is the most famous. In this next stage a star is thought to have a good chance of going supernova.

Though this image is truely spectacular, taken by a ground-based telescope of a star 13,000 light years away, what I find most significant about this image is its fuzziness. It reminds me of the kind of images astronomers and the public routinely accepted as the best possible, before the launch of the Hubble Space Telescope.
» Read more

NASA science administrator Ed Weiler is retiring after 33 years

Science administrator Ed Weiler is retiring after almost 33 years at NASA.

Among Weiler’s many achievements, he was crucial to getting the Hubble Space Telescope launched. Even more important, though others had conceived the idea of using the shuttle to maintain Hubble, he designed the maintenance schedule for the telescope. Seven years before it was launched, he insisted that a regular schedule of repair missions be placed on the shuttle manifest. He also insisted that a duplicate of the telescope’s main camera be built, so that if anything went wrong with the first a repaired unit could be launched quickly. It was his foresight here that made the first repair of Hubble in December 1993 go so smoothly. For this, astronomers will always be grateful.

Another look at the cost of building NASA’s heavy lift rocket

Clark Lindsey takes another look at the cost for building the Congressionally-mandated heavy lift rocket, what NASA calls the Space Launch System and I call the program-formerly-called-Constellation. Key quote:

Finally, I’ll point out that there was certainly nothing on Wednesday that refuted the findings in the Booz Allen study that NASA’s estimates beyond the 3-5 year time frame are fraught with great uncertainty. Hutchison and Nelson claimed last week that since the near term estimates were reliable, there’s no reason to delay getting the program underway. That’s the sort of good governance that explains why programs often explode “unexpectedly” in cost after 3-5 years…

In other words, this is what government insiders call a “buy-in.” Offer low-ball budget numbers to get the project off the ground, then when the project is partly finished and the much higher real costs become evident, Congress will be forced to pay for it. Not only has this been routine practice in Washington for decades, I can instantly cite two projects that prove it:
» Read more

The Hubble Space Telescope: Movie camera!

Using Hubble Space Telescope images taken over a 14 year period, a team of astronomers led by Patrick Hartigan of Rice University have produced six very short time-lapse movies, showing the changes that have occurred to a variety of interstellar jets and bow shocks over time. The one below is my favorite. They are all worth looking at, as they illustrate forcefully how the changeless heavens are not so changeless.

Hubble captures a necklace in space

necklace in space

Who needs aliens and imagined cities on the moon when you have a reality that produces such strange and beautiful things as the image on the right?

On July 2, the Hubble Space Telescope took this image of a planetary nebula, aptly dubbed the Necklace Nebula. As the caption explains,

A pair of stars orbiting close together produced the nebula, also called PN G054.2-03.4. About 10,000 years ago one of the aging stars ballooned to the point where it engulfed its companion star. The smaller star continued orbiting inside its larger companion, increasing the giant’s rotation rate.

The bloated companion star spun so fast that a large part of its gaseous envelope expanded into space. Due to centrifugal force, most of the gas escaped along the star’s equator, producing a ring. The embedded bright knots are dense gas clumps in the ring.

The binary still exists, and can be seen as the star in the center of the necklace. The two stars are now only a few million miles apart and complete an orbit around each other in about a day.

1 6 7 8 9