Japan’s lunar lander shuts down for long lunar night
After two days of post landing operations, engineers for the Japanese lunar lander SLIM have shut it down now as the sun has set at its landing site on the Moon and its solar panel can no longer charge its batteries.
The picture to the right, reduced to post here, was the last image sent back by SLIM before shut down. It looks to the southeast across the width of 885-foot-wide Shioli Crater, the opposite rim the bright ridge in the upper right about a thousand feet away.
The engineers shut the spacecraft down prior to sunset in order to increase the chances that it will survive that very long harsh lunar night and reactivate when the Sun rises in two weeks. They recognized that the odds of this occurring are slim (no pun intended), because the lander was not designed to withstand the night’s cold temperatures, and more important, the solar panel will not get recharged until late in the lunar day, an additional week-plus past sunrise. That long period of inactivity will likely kill it.
No matter. The spacecraft’s main goal was to prove the ability of its landing system to land softly within a small target zone. It did so, even if it had an engine issue that caused it to land upside down. This new engineering will make it possible to send unmanned and manned landers to places on other planets that previously were impossible.
After two days of post landing operations, engineers for the Japanese lunar lander SLIM have shut it down now as the sun has set at its landing site on the Moon and its solar panel can no longer charge its batteries.
The picture to the right, reduced to post here, was the last image sent back by SLIM before shut down. It looks to the southeast across the width of 885-foot-wide Shioli Crater, the opposite rim the bright ridge in the upper right about a thousand feet away.
The engineers shut the spacecraft down prior to sunset in order to increase the chances that it will survive that very long harsh lunar night and reactivate when the Sun rises in two weeks. They recognized that the odds of this occurring are slim (no pun intended), because the lander was not designed to withstand the night’s cold temperatures, and more important, the solar panel will not get recharged until late in the lunar day, an additional week-plus past sunrise. That long period of inactivity will likely kill it.
No matter. The spacecraft’s main goal was to prove the ability of its landing system to land softly within a small target zone. It did so, even if it had an engine issue that caused it to land upside down. This new engineering will make it possible to send unmanned and manned landers to places on other planets that previously were impossible.