Sponge in space

Hyperion

On August 25 Cassini did a close fly-by of the small Saturn moon Hyperion, getting as close as 15,500 miles. The mission has just released images from that fly-by.

Looks like a sponge, doesn’t it? This moon is small, only 168 miles across, which makes it about half the size of the asteroid Vesta that Dawn is presently orbiting. Why it is so peppered with craters is of course the big science question. I would guess this has something to do with the environment around Saturn, with its rings and the innumerable particles that come from it. Yet, other moons of Saturn are not as crater-filled, so there is obviously more to this than meets the eye.

This fly-by was the second closest of Hyperion that Cassini has done, the first passing over the the moon’s surface by only 310 miles. Because the irregularly-shaped moon’s rotation is more like a chaotic tumble, scientists could not predict what part of the surface they would see. To their luck the new images captured new territory.

Another fly-by is scheduled in only three weeks, on September 16, 2011. This time, however, the spacecraft won’t get as close, passing at a distance of about 36,000 miles.

Space Boat: A Nautical Mission to an Alien Sea

The Titan Mare Explorer: A nautical mission to an alien sea.

If [NASA] green-lights the mission, the capsule will lift off in 2016. By 2023, TiME will be about 800 million miles away in Titan’s north-polar region, home to its biggest lakes and seas. The capsule will take photographs, collect meteorological data, measure depth, and analyze samples. TiME will have no means of propulsion once it is on Titan, so it will float, carried by breezes across the sea’s surface. Then, by the mid-2020s, it will enter a decade-long winter of darkness as the moon’s orbit takes it to the dark side of Saturn, away from the sun and communication. It won’t have a line of sight to Earth to beam back more data until 2035.

Enceladus rains water onto Saturn

The Herschel space telescope has discovered that the water expelled from the tiger stripes on Enceladus eventually rains down on Saturn.

Enceladus expels around 250 kg of water vapour every second, through a collection of jets from the south polar region known as the Tiger Stripes because of their distinctive surface markings. These crucial observations reveal that the water creates a doughnut-shaped torus of vapour surrounding the ringed planet. The total width of the torus is more than 10 times the radius of Saturn, yet it is only about one Saturn radius thick. Enceladus orbits the planet at a distance of about four Saturn radii, replenishing the torus with its jets of water.

Ethane lakes in a red haze: Titan’s uncanny moonscape

Titan’s ethane lakes in a red haze.

So far, there are no recognisable signs of organic life. That’s not surprising: by terrestrial standards, Titan is a deep freeze with surface temperatures at a chilly -180°C. Yet Titan is very much alive in the sense that its atmosphere and surface are changing before our eyes. Clouds drift through the haze and rain falls from them to erode stream-like channels draining into shallow lakes. Vast dune fields that look as if they were lifted from the Sahara sprawl along Titan’s equator, yet the dark grains resemble ground asphalt rather than sand. It is a bizarrely different world that looks eerily like home. Or as planetary scientist Ralph Lorenz puts it: “our prototype weird-world exoplanet”.

Cassini looks past one Saturn moon to another

The image below was taken on January 11, 2011 by the space probe Cassini, in orbit around Saturn. First we see the southern polar regions of the moon Rhea, 949 miles in diameter. Beyond is the moon Dione, 698 miles across, appearing to sit on the rings of Saturn.

As far as I am concerned, this image, as well as almost every other image from Cassini, proves that any hotel built in orbit around Saturn is unquestionably going to be one of the hottest tourist spots in the solar system.

Looking past Rhea to Dione and Saturn's rings

Cassini directly samples the plumes from Enceladus and finds an ocean-like Spray

Cassini has directly sampled the plumes from Enceladus and discovered a salty ocean-like spray.

The new paper analyzes three Enceladus flybys in 2008 and 2009 with the same instrument, focusing on the composition of freshly ejected plume grains. The icy particles hit the detector target at speeds between 15,000 and 39,000 mph (23,000 and 63,000 kilometers per hour), vaporizing instantly. Electrical fields inside the cosmic dust analyzer separated the various constituents of the impact cloud.

The data suggest a layer of water between the moon’s rocky core and its icy mantle, possibly as deep as about 50 miles (80 kilometers) beneath the surface. As this water washes against the rocks, it dissolves salt compounds and rises through fractures in the overlying ice to form reserves nearer the surface. If the outermost layer cracks open, the decrease in pressure from these reserves to space causes a plume to shoot out. Roughly 400 pounds (200 kilograms) of water vapor is lost every second in the plumes, with smaller amounts being lost as ice grains. The team calculates the water reserves must have large evaporating surfaces, or they would freeze easily and stop the plumes.

A Fizzy Ocean on Enceladus

A fizzy ocean on Enceladus? Key quote:

[Scientists believe] that gasses dissolved in water deep below the surface [of Enceladus] form bubbles. Since the density of the resulting “sparkling water” is less than that of the ice, the liquid ascends quickly up through the ice to the surface. “Most of the water spreads out sideways and ‘warms’ a thin surface ice lid, which is about 300 feet thick,” explains Matson. “But some of it collects in subsurface chambers, builds up pressure, and then blasts out through small holes in the ground, like soda spewing out of that can you opened.”

Saturn moon has thin oxygen and carbon dioxide atmosphere

Saturn moon has a thin oxygen and carbon dioxide atmosphere. Key quote:

“The major implication of this finding at Rhea is that oxygen atmospheres at icy moons, until now only detected at Europa and Ganymede, may in fact be commonplace around those irradiated icy moons throughout the universe with sufficient mass to hold an atmosphere,” said study leader Ben Teolis of the Southwest Research Institute in San Antonio, Texas.

1 5 6 7 8