SpaceX and Jared Isaacman offer private mission to NASA to raise Hubble’s orbit

Capitalism in space: In a press release issued yesterday, NASA revealed that it has signed an unfunded agreement with SpaceX and Jared Isaacman’s Polaris program (which has purchased a series of manned missions on Dragon) to study the possibility of sending one of those private manned missions to the Hubble Space Telescope to raise its orbit.

SpaceX – in partnership with the Polaris Program – proposed this study to better understand the technical challenges associated with servicing missions. This study is non-exclusive, and other companies may propose similar studies with different rockets or spacecraft as their model.

Teams expect the study to take up to six months, collecting technical data from both Hubble and the SpaceX Dragon spacecraft. This data will help determine whether it would be possible to safely rendezvous, dock, and move the telescope into a more stable orbit.

In my book describing the history of the people who created Hubble, The Universe in a Mirror, I repeatedly noted how throughout its history people have tried to kill it, first in the design phase, then in the budget, then during construction, then after it was launched and the mirror was found to be ground incorrectly, and then after the Columbia accident when NASA management tried to cancel its last shuttle servicing mission.

Every attempt failed. As I have noted in that book and many times since its publication, Hubble is a telescope that will not die. NASA has for years intended to launch a mission to de-orbit it when its orbit had decayed enough that it was unstable. I’ve always said that when that time came, someone would propose and push for a mission to instead raise that orbit.

That prediction is now coming true. Though no robot arm exists yet for Dragon to use to grab Hubble in any rendezvous attempt, creating one is hardly difficult. At that point raising the telescope’s orbit becomes relatively trivial.

Whether such a mission could do more, such as replace Hubble’s ailing gyroscopes, is unknown. It would be foolish however not to review that possibility as well.

Firefly to try again to complete first launch of its Alpha rocket

UPDATE: After a first abort about T-minus 4 minutes at around midnight, the launch team quickly recycled for a new launch at 12:52 am. At T-0 the rocket then aborted at launch.

There is still more than an hour in the launch window, so assuming they can rapidly pin down the cause of the abort, another attempt is possible, though unlikely. CONFIRMED: They will try again tomorrow, with the same launch window.

Though frustrating, these repeated launch attempts are actually wonderful real time training for Firefly’s launch team. The rocket is still in good condition, and they get to practice analyzing a situation under pressure and acting quickly to move forward.

Capitalism in space: Firefly will once again attempt to complete the first successful launch of its Alpha rocket tonight, with the launch scheduled for 12:01 am (Pacific) from Vandenberg Space Force Base. The launch window lasts two hours, so if they have an abort for a minor fixable reason there is a good chance they will still be able to cycle around and try again.

I have embedded below the live feed from Everyday Astronaut, which begins at around 10 pm (Pacific), two hours before the launch.

This will be their second attempt, with the first failing one year ago when one engine in the first stage shut down prematurely due to a loose connection. They attempted to launch this second rocket for the first time earlier this month, but had to scrub due to weather.

The rocket carries five small satellites, including one, Serenity, that was built by BtB reader (and supporter) Joe Latrell, builder of cubesats in a shop behind his garage.
» Read more

Lunar mountains and wrinkle ridges

Montes Recti on the Moon

Cool image time! The photo above, taken by Lunar Reconnaissance Orbiter (LRO), was released today by the orbiter’s science team, and provides us an oblique look at the mountains dubbed Montes Recti (lower right) and the wrinkle ridges near them (lower left). The highest point in this mountain range is about 5,900 feet high.

The image looks west across the northern part of the mare region dubbed Mare Imbrium, the dark area on the Moon’s visible hemisphere near its top. In the distance can be the mountains that form part of mare’s rim. The rounded peak in the top right is Promontorium Laplace (about 8,530 feet high). It is named this because it projects out (a promontory) into the mare a considerable distance from the rim. The crater at top center is Laplace D. As for the wrinkle ridges, the scientists describe them like so:

Tectonic landforms are those formed by forces that act to either contract or pull apart crustal materials. These forces develop faults or breaks in the crustal materials, and movement or slip along the faults form either positive or negative relief landforms. On the Moon, positive relief contractional landforms are the most common. The most significant contractional landforms on the Moon are wrinkle ridges, found exclusively in the dark mare basalts.

Essentially, something caused the ground to contract, which caused it to break at these ridges and be forced upward.

Jupiter’s north pole cyclones appear as stable as those at the south pole

The northern polar cyclones of Jupiter
Click for original figure.

In reviewing five years of data from Juno, scientists now conclude that the polygon of large storms surrounding Jupiter’s north pole appear as stable as the same poloygon of storms found at the south pole.

Each polygon is made up of a central polar cyclone (PC) surrounded by a number of circum-polar cyclones (CPC). The image to the right, Figure 1 from the paper, compares the north polar storms from 2017 (top) to 2022 (bottom). During the five years of observations the whole polygon “rotated approximately 15° westward,” though it essentially maintained its structure.

After 5 years, the 8 + 1 North PCs structure and the 5 + 1 South one show very small changes; the lifetime of a single cyclone is therefore longer than 25 years and possibly longer than 75 years. Also, single cyclones have their peculiar morphology and this is often retained after 5 years, both in radiance and in morphology. In particular, this is the first time that we can observe the North CPCs system since the discovery in 2017, and we find that the structure is almost unperturbed.

The question that appears to remain unanswered by this data is whether these storms are deep-rooted to the interior of Jupiter or shallow structures. The stability suggests the latter, but this remains unproven.

Chang’e-5 samples suggest lunar meteorite impacts took place the same time as big Chicxulub impact

In analyzing lunar samples brought back by China’s Chang’e-5 Moon lander, Australian scientists have found evidence of lunar meteorite impacts that apparently took place the same time as big Chicxulub impact in the Yucatan 66 million years ago, thought by many scientists to have caused the extinction of the dinosaurs.

Their findings suggest that the frequency of meteorite impacts on the Moon may have been mirrored on Earth, and that major impact events on Earth were not stand-alone events and instead were accompanies by a series of smaller impacts. The study has been published in Science Advances.

“We combined a wide range of microscopic analytical techniques, numerical modelling, and geological surveys to determine how these microscopic glass beads from the Moon were formed and when,” says lead author Professor Alexander Nemchin, from the Space Science and Technology Centre (SSTC) in the School of Earth and Planetary Sciences at Curtin University in Perth.

The data suggests two possibilities, neither of which is confirmed. First, the impacts could have occurred because a cluster of large objects hit both Earth and the Moon at the same time. Second, the impacts on the Moon could have been caused by objects thrown up from the Earth when the bigger impact occurred at Chicxulub.

Either way, the data suggests a greater and more complex interaction between events on the Earth and events on the Moon.

SpaceX to upgrade 2nd Kennedy launchpad for manned launches

In order to create some increased redundancy, SpaceX and NASA have agreed to upgrade the company’s second launchpad at Cape Canaveral, LC-40, so that both it and pad LC-39A can launch manned Dragon capsules.

This plan grew out of concern by NASA that the new Starship orbital launchpad was too close to LC-39A, and could possibly damage it during a launch. Should that happen, and no back-up launchpad was available, the agency would have no way to get astronauts up to ISS, since Boeing’s Starliner is not yet operational. Because of that concern, NASA made it clear that no Starship launches could occur in Florida until this issue was resolved.

The solution? Make LC-40 a manned launchpad too.

Nothing is known about the nature of the modifications that LC-40 will require. But more likely than not, NASA will require SpaceX to develop something similar to Pad 39A’s facilities. That would involve building a new crew access tower, crew access arm, escape system (39A uses baskets and ziplines), and an on-site bunker for astronauts.

It is also likely that no Starship launches at Kennedy will occur until this work is done and a manned launch from LC-40 takes place. Though this could delay Starship somewhat, I expect not significantly. Before SpaceX is ready to launch operationally in Florida, it still has to do a lot of testing and development of Starship/Superheavy in Boca Chica, work that could take several years. I also suspect that it will get the launchpad work done relatively quickly, especially if NASA agrees to pay for it.

Initial Webb results revised because telescope wasn’t yet fully calibrated

The uncertainty of science: Though it appears that no results will have to be abandoned, the scientists who published some of the very first results from the Webb Space Telescope have been scrambling to adjust and revise their papers because the telescope is only now getting fully calibrated.

“This caused a little bit of panic,” says Nathan Adams, an astronomer at the University of Manchester, UK, who, along with his colleagues, pointed out the problem in a 9 August update to a preprint they had posted in late July3. “For those including myself who had written a paper within the first two weeks, it was a bit of — ‘Oh no, is everything that we’ve done wrong, does it all need to go in the bin?’”

To try to standardize all the measurements, the STScI is working through a detailed plan to point Webb at several types of well-understood star, and observe them with every detector in every mode for every instrument on the telescope4. “It just takes a while,” says Karl Gordon, an astronomer at the STScI who helps lead the effort.

In the meantime, astronomers have been reworking manuscripts that describe distant galaxies on the basis of Webb data. “Everyone’s gone back over and had a second look, and it’s not as bad as we thought,” Adams says. Many of the most exciting distant-galaxy candidates still seem to be at or near the distance originally estimated. But other preliminary studies, such as those that draw conclusions about the early Universe by comparing large numbers of faint galaxies, might not stand the test of time. Other fields of research, such as planetary studies, are not affected as much because they depend less on these preliminary brightness measurements.

Overall, it does not appear the more precise calibrations will change much of signficance, since most of the earliest observations were simply that, observations, not theoretical. Because the distance estimates remain largely unchanged however the theorists are left with the same conundrum: The age and apparent nature of the most distant objects does not seem to fit with what the theories had predicted Webb would see.

Hubble & Webb make first coordinated observations, tracking DART impact of Dimorphus

Webb and Hubble together look at DART impact of Dimorphus
Click for full image.

For the first time scientists have used both the Hubble Space Telescope and the James Webb Space Telescope to observe the same astronomical event, in this case the impact of the DART spacecraft on the asteroid Dimorphus on September 26, 2022.

The two images to the right show the asteroid several hours after impact. Both telescopes also captured images before the impact as well. From the press release:

Observations from Webb and Hubble together will allow scientists to gain knowledge about the nature of the surface of Dimorphos, how much material was ejected by the collision, and how fast it was ejected. Additionally, Webb and Hubble captured the impact in different wavelengths of light – Webb in infrared and Hubble in visible. Observing the impact across a wide array of wavelengths will reveal the distribution of particle sizes in the expanding dust cloud, helping to determine whether it threw off lots of big chunks or mostly fine dust. Combining this information, along with ground-based telescope observations, will help scientists to understand how effectively a kinetic impact can modify an asteroid’s orbit.

When Webb was first conceived in the late 1990s, it was exactly for this reason, to combine Hubble’s optical vision with Webb’s infrared view. Though more than a decade late, it has finally happened.

It will be months before scientists begin to decipher the data produced by all the telescopes and spacecraft used to observe the DART impact. What we are seeing now are merely hints at what has been learned.

Astra’s last rocket failure pinpointed to upper stage engine

Astra has determined that the launch failure in June 2022 was because the upper stage engine of its Rocket 3.3 rocket was burning fuel faster than it was supposed to.

“We’ve determined that the upper stage shut down early due to a higher-than-normal fuel consumption rate,” the update reads. “We have narrowed the root cause to an issue with the upper stage engine. We have also completed many rounds of ground testing, including multiple tests that yielded results consistent with the failure condition in flight.”

When the failure happened, the company had quickly determined that the upper stage had shut down prematurely. The investigation has now determined that it had simply run out of fuel, because of that higher-than-intended burn rate.

While they say they will next institute corrective measures, that seems unlikely for this engine. In August Astra announced it would no longer launch Rocket 3.3, and was instead shifting to the development of a newer bigger rocket, Rocket-4. It now appears that decision was made based on the results of this investigation. The engine probably has fundamental issues that could not be resolved easily.

This decision to cease use of Rocket 3.3 essentially removed Astra as an operational rocket company. Whether the company can re-enter the launch market with a new rocket however remains very unclear.

Ingenuity completed 33rd flight this past weekend

This notice is a bit late, but then, there really isn’t much to report. According to the Ingenuity flight log, engineers successfully completed the helicopter’s 33rd flight on September 24, 2022, flying about 364 feet for 55 seconds.

The plan had been to fly 365 feet for 55.6 seconds, so that matched their plan almost exactly. According to the interactive map that tracks the movement of both the rover Perseverance and the helicopter, this flight continued the helicopter’s movement almost due west, bringing it closer to the rover so as to facilitate communications.

The primary goal of Ingenuity’s engineering team at this time is to refine the accuracy of their software in order to better understand how to fly robots on Mars. This will help prepare the next helicopters for future missions.

Is China-Russia partnership to build lunar base dead?

China/Russian Lunar base roadmap
The so-called Chinese-Russian partnership to explore
the Moon.

In 2021 China and Russia announced a long term plan to jointly explore the Moon, with the project eventually leading to the construction of a joint lunar base.

The graphic to the right comes from that announcement. It lists all lunar missions being built by both Russia and China, and outlined the step-by-step process in which both will work together to build that base.

At the time I noted the likelihood of serious Russian delays, since confirmed. I then noted this:

This decision [by Russia to delay] also demonstrates that Russia’s so-called partnership with China to explore the Moon …is pure hogwash.

Russia’s track record in space since the fall of the Soviet Union has been poor. It hasn’t been able to complete almost any project on time, with many dying stillborn. Most of the time Russian authorities make big announcements of big plans, but nothing ever gets built.

It appears now that China has recognized this reality. In presentations at the International Astronautical Congress (IAC) in Paris last week, China repeatedly offered payload space on its many planetary missions — as listed to the right — to outside nations and even private concerns.

Based on China’s recent track record, those missions will fly, and will likely fly close to their predicted launch dates. Since its space program is designed by China to promote itself, it hopes to get others to participate for propaganda reasons. It also hopes it can then steal some technology from that partnership, as also shown by its long term track record.

What China’s presentations at IAC did not do, however, was mention Russia.

The only visible representation of potential Russian [participation] came in a slide listing future Chinese Chang’e and Russia Luna missions, alongside graphics of the Chinese Long March 9 super heavy-lift rocket and a large Russian launch vehicle. The slide was taken straight from ILRS handbook released to coincide with the St. Petersburg event in 2021, and Russia nor its missions were not explicitly named.

It is hard to say if the lack of representation of Russian involvement reflects a change in Beijing’s thinking or a sensitivity to the current geopolitical context. But China appears to face a dilemma for its grandest space ambitions so far.

It appears China has recognized the paper tiger nature of its partnership with Russia. It hasn’t precluded the partnership, but it realizes that its program to explore the Moon and the solar system must move forward independent of Russia, or else Russia will act like a lead weight to slow it down.

Celestron to modify commercial amateur telescope for space use

Capitalism in space: Amateur telescope manufacturer Celestron has signed a deal to adapt one of its more expensive ground-based telescopes for use in space.

Trans Astronautica Corp. announced an agreement Sept. 27 with telescope manufacturer Celestron to develop a space-qualified version of the company’s Rowe-Ackermann Schmidt Astrograph (RASA) ground-based telescope. “We’ve been using Celestron’s RASA telescopes in our space domain awareness and asteroid prospecting systems, and we found them to be very affordable, high-quality optical systems,” Joel Sercel, TransAstra founder and CEO, told SpaceNews. “We looked at the designs and we realized it would not be that hard to adapt them for space use.”

Over the next year, TransAstra plans to modify the RASA telescope design and substitute materials to produce a telescope that can withstand radiation exposure, temperature swings, and the vibration and shock loads of space launch.

TransAstra provides tracking data on space junk to both the commercial and defense industry. It also has a new deal to use its telescopes to provide schools use of these telescopes for educational purposes. The goal is to put this capability into orbit.

The future ramifications however are profound. Once Celestron has a commercial relatively inexpensive telescope capable of operating in space (or on the Moon), it will not take long before customers begin lining up eager to buy and launch it. Think about it: though there will be engineering issues to overcome, the cost of placing one of these telescopes on one of the new commercial lunar landers for operation on the Moon will not be far beyond the budgets of many amateur astronomers, some of whom spend hundreds of thousands of dollars on their own ground-based observatories.

More glaciers in Mars’ glacier country

Overview map

glacial layering in Clasia Vallis
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on June 18, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what appear to be layered glacial features on the floor of what at first glance appears to be a crater.

It is not a crater however. The depression in the lower right of this image is the rim and floor of a 77-mile-long meandering canyon on Mars dubbed Clasia Vallis. The red cross in the overview map above marks its location, at 34 degrees north latitude. This channel drains downward from the southern cratered highlands into the 2,000-mile-long mid-latitude strip of mensae terrain that I dub glacier country because almost every hi-res image from this region shows glacial features.

Below is a wider view of Clasia Vallis, taken by the context camera on MRO on March 19, 2014.
» Read more

First ground-based telescope view of DART impact on Dimorphus

LICIACube Explorer image of DART impact

We now have the first ground-based images of the DART impact on the 525-foot-wide asteroid Dimorphus yesterday, captured by the Hawaiian telescope ATLAS.

You need to watch the video of the full sequence of images, available here, to get a true sense of the impact. The cloud of material quickly expands to about twice the asteroid’s size, then dissipates away, with the remaining asteroid now appearing larger (?). That larger size could be caused by a remaining cloud of material that still needs to settle back to the surface.

More images have been released by a Chinese telescope. Also, the first images from the Italian cubesat LICIACube Explorer, flying in parallel with DART, have been released. I have posted one to the right. The large blob near the center is the parent half-mile-wide asteroid, Didymos. Dimorphus is buried in the debris cloud above and slightly to the right.

Hat tip stringer Jay for the links to these images.

Radar data from Zhurong finds no ice to a depth of 260 feet

Zhurong's ground-penetrating radar data

Overview map

Chinese scientists today finally published their results from the ground-penetrating radar instrument on their Mars rover Zhurong, revealing that to a depth of 260 feet (80 meters), it detected no clear signal of water ice.

Figure 2 of their paper, posted above, summarizes their results. It shows the radar profile to 328 feet (100 meters) depth along Zhurong’s route, as shown in the map to the right, with the last bit of its recent travels ending somewhere in the blue circle. From the paper:

Our low-frequency radar imaging profile shows radar signals within the depth range of 0–80 m (Fig. 2a), precluding the existence of a water-rich layer within this depth range as the existence of water would strongly attenuate the radar signals and diminish the visibility of deeper reflections. The estimated low (less than 9) dielectric permittivity (Fig. 2c) further supports the absence of a water-rich layer as water-bearing materials typically have high (greater than 15) dielectric permittivity.

We further tested this assessment with thermal considerations by conducting a heat conduction simulation based on available thermal parameters estimated from previous studies (Methods). Our thermal simulation results … show that the Zhurong landing area has an annual average temperature of around 220K in the RoPeR detection depth range, which is much lower than the freezing point of pure water (273K), and also lower than the eutectic temperatures of typical sulfate and carbonate brines, but slightly above those of perchlorate brine systems. This observation suggests that the shallow subsurface of the Zhurong landing area could not stably contain liquid water nor sulfate or carbonate brines, consistent with the radar imaging result.

The data suggests that below the surface topsoil layer, the regolith, there are two distinct layers of material that the scientists interpret as possible evidence of past catastrophic floods. That conclusion however is very very uncertain. The main take-away is that in the northern lowland plains of Utopia Planitia at 25 degrees north latitude, where Zhurong landed, Mars is definitely a dry desert, with no water close to the surface.

This data also suggests that if you establish a colony anywhere in Mars’ dry equatorial regions within 30 degrees latitude of the equator, you will likely have to travel north or south a considerable distance to get to easily accessible ice. The global map of Mars below shows the regions where ice is most evident, north and south of 30 degrees latitude.
» Read more

Two Chinese launches: Long March 2D and Long March 6 put satellites into orbit

China successfully completed two launches in the past twelve hours, placing four satellites into orbit in total.

First, in the evening of September 26th, a Long March 2D rocket launched a “remote sensing” satellite into orbit. This was then followed in the morning of September 27th with the launch of a Long March 6 rocket, putting three “experimental” Earth observation satellites into orbit. We know nothing more about any of these satellites.

The article at the link lists a third launch, of a Kuaizhou-1A rocket, but I have already reported that.

The leaders in the 2022 launch race:

43 SpaceX
41 China
12 Russia
7 Rocket Lab
6 ULA

American private enterprise still leads China 60 to 41 in the national rankings. Against the entire world combined, the U.S. now trails 60 to 61.

DART hits Dimorphus

Didymos and Dimorphus

Dimorphus

The surface of Dimorphus

The probe DART today successfully impacted the small 525-foot-wide asteroid Dimorphus. From the data produced engineers will calculate how much that impact changed Dimorphus’ orbit around it parent asteroid, half-mile-wide Didymos.

The three images to the right give a sense of the approach and impact.

The first, at 2 minutes and 30 seconds from impact, shows Didymos in the left bottom corner. You can actually see individual boulders on its surface. At this distance and resolution is is unclear whether it is a rubble pile or a more solid body. Dimorphus is no longer a mere dot, but no surface features can yet be discerned.

The second image, only seventeen seconds before DART crashed into Dimorphus, shows us the entire asteroid. Though it appears to be a pile of rocks, it also appears less of a rubble pile than both Ryugu and Bennu, visited by probes in 2019 and 2020. Those rubble-piles had almost no smooth surface areas. Dimorphus however at this distance and resolution does appear to have a lot of areas where the surface is relatively smooth, suggesting its structure is more solid than a rubble pile.

At only 525 feet across, some of those bigger boulders are about 50 to 60 feet in diameter.

The white dot in the center of Dimorphus marks the rocks seen in the third image, taken about five seconds before impact. At this resolution so close to the surface, it appears the smooth areas are actually made up of many tiny pebbles and dust.

The biggest rock in the center of the picture is probably between ten to twenty feet in diameter.

The primary data from this mission will not be available for a few weeks. Scientists have to observe both asteroids to see how much, if at all, Dimorphus’s orbit was shifted by the impact. Also, the images from the Italian cubesat, LICIACube Explorer, which was flying parallel to DART and taking pictures of the impact, plume, and back side of Dimorphus, won’t be available until later this week. Those images should give us a measure of the spacecraft’s effect on the asteroid. They will also reveal a lot more about the asteroid’s geology.

September 26, 2022 Quick space links

Courtesy of stringer Jay, who trolls Twitter so I don’t have to.

Mostly shows views of the Earth.

At the link the reason given is the “problems with the delivery of foreign-made parts.” Or to put it more bluntly, the sanctions against Russia due to its unprovoked invasion of the Ukraine has blocked many sophisticated computer parts that Russia cannot make itself.

All fantasy at this point. Russia’s been promising a next generation capsule replacing Soyuz for more than a decade.

Video at the link. The test occurred on September 23, 2022. No word yet on when they plan to launch.

Zig-zag ridges on Mars

Zig-zag ridges on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on April 9, 2022v by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a series of parallel zig-zag ridges in a flat, knobby terrain.

I don’t presume to explain this at all. According to one research paper,

This interplana region consists of extensive networks of ridges—the eponymous Aeolis Dorsa—and is interpreted as having formed by topographic inversion of fluvial and alluvial deposits.

Why these ridges zig-zag however does not seem to fit into either a fluvial or alluvial explanation, both of which involve the flow of water. The quote implies these could be inverted stream channels (where the compacted streambed becomes a ridge when the surrounding terrain erodes away), but once again, the distinct zig-zag pattern seems wrong. Rivers meander, but they don’t generally turn right and left so sharply. And why should we see parallel zig-zags? This doesn’t seem to fit with a river channel origin.

The particular location, as shown on the overview map below, is close to the dry Martian equator, on the edge of Medusae Fossae Formation, the largest field of volcanic ash dust on Mars.
» Read more

Excerpt of Conscious Choice published by The Federalist

The Federalist today published a short excerpt from the last chapter of my new book, Conscious Choice: The origins of slavery in America and why it matters today and for our future in outer space.

You can read it here. They titled the excerpt most appropriately: “When Settling Space, Future Colonists Should Emulate The Pilgrims”. The key quote from this particular excerpt:

Building a new human society means the settlers must go with the intent of raising healthy and well-adjusted children. Future space colonists must remember that they are not really exploring the unknown. What they are really doing is building new societies for their children and children’s children. Such an effort carries great responsibility, and if we shirk that responsibility, our descendants will curse our memory.

While the lessons taught by the mistakes of Virginia’s colonists are long and complex (and carefully outlined in Conscious Choice), it is this lesson that is the most important to remember for future colonists in space. We will go to explore, but what we will really be doing is creating those new worlds for future generations. If we do not put our kids first and foremost, those colonies will certainly fail, as Virginia did.

And as it appears America is failing now, after several generations where children were more often considered a nuisance and something that others could take of for us.

A galaxy slowly being eaten by its black hole

Spiral galaxy
Click for full image.

Cool image time! The photo to the right, rotated and reduced to post here, was taken by the Hubble Space Telescope. From the caption:

NGC 5495, which lies around 300 million light-years from Earth in the constellation Hydra, is a Seyfert galaxy, a type of galaxy with a particularly bright central region. These luminous cores — known to astronomers as active galactic nuclei — are dominated by the light emitted by dust and gas falling into a supermassive black hole. This image is drawn from a series of observations captured by astronomers studying supermassive black holes lurking in the hearts of other galaxies.

Essentially Seyfert galaxies are galaxies whose central supermassive black hole has become dominant, large enough that its gravity is slowly eating up the rest of the galaxy. As it increasingly swallows stars and gas, the black hole emits more and more energy, thus becoming an active galactic nuclei.

Two stars from our own galaxy also dominate this picture, one inside and to the right of the galaxy’s center, and the other the bright star at the bottom of the picture, both identified by the diffraction spikes.

NASA and ESA sign simple lunar exploration agreement

In what appears to be an attempt by both to maintain their working relationship, even though several major European nations have not yet signed the Artemis Accords, last week NASA and ESA signed a simple agreement reaffirming their desire to work together in exploring the Moon.

Neither ESA nor NASA published the agreement, which in a photograph appeared to be little more than one page. In a Sept. 23 statement, NASA described the agreement as a “non-binding joint statement” about current and prospective future cooperation in Artemis.

Of ESA’s members, only France, Italy, Luxembourg, Poland, and the United Kingdom have signed the Artemis Accords. Thus, ESA and NASA face a conundrum. According to the accords and the NASA policy established by the Trump administration and supposedly continued under Biden, only signatories can participate in the Artemis program. Yet, most of the members of ESA have not signed, and ESA has no authority to make them do so. ESA however is building the service module for the Orion capsule — as well as other major components of Artemis — which NASA must have.

I suspect this short one page agreement is the Biden administration’s under-handed admission that — when it comes to Europe — the Artemis Accords will no longer be required.

Astroscale to partner with UK companies to develop mission to remove two defunct orbiting satellites

Capitalism in space: The Japanese-based company Astroscale has signed an agreement with the United Kingdom’s space agency to develop a mission — in partnership with a number of UK companies — to remove two defunct orbiting satellites.

The COSMIC mission will be developed in collaboration with 10 UK-based partner companies in England, Scotland and Northern Ireland including: MDA UK, Thales Alenia Space UK, Nammo, GMV-NSL, NORSS, Goonhilly, Satellite Applications Catapult, Willis Towers Watson, and other advisory and industrial partners.

What Astroscale brings to the table is its magnetic capture system that it has already tested in orbit.

This is also the second contract Astroscale has won in Europe for its space junk removal technology. In May it signed a deal with OneWeb to de-orbit two of its satellites.

Watch DART smash into asteroid today

At 7:14 pm (Eastern) the NASA’s Double Asteroid Redirection Test (DART) spacecraft will crash into the small and harmless asteroid Dimorphus to see if such an impact could be used in the future to change the path of another asteroid aimed at Earth.

Dimorphus is 525 feet in diameter, and is a small moon of the larger half-mile-wide asteroid Didymos. Both are presently about 7 million miles away from Earth.

I have embedded the live streams below, one from a DART camera, dubbed DRACO, that will view the asteroid as the spacecraft approaches, and the other from NASA’s official live stream. From the DRACO live stream webpage:
» Read more

NASA managers decide finally to roll SLS back to assembly building

NASA managers this morning finally gave up on launching their SLS rocket in an early October launch window and scheduled rolling back the rocket to the assembly building tonight.

NASA will roll the Artemis I Space Launch System rocket and Orion spacecraft back to the Vehicle Assembly Building on Monday, Sept. 26. First motion is targeted for 11 p.m. EDT.

Managers met Monday morning and made the decision based on the latest weather predictions associated with Hurricane Ian, after additional data gathered overnight did not show improving expected conditions for the Kennedy Space Center area. The decision allows time for employees to address the needs of their families and protect the integrated rocket and spacecraft system. The time of first motion also is based on the best predicted conditions for rollback to meet weather criteria for the move.

Based on this graph [pdf] provided by NASA earlier this year, the next launch window is from October 17 to October 31, followed by another from November 12 to November 27. It is unclear whether they can meet that first window, even if all engineers do is check and recharge the flight termination system batteries.

The question of the rocket’s two solid-fueled boosters however looms. Both are now one year past NASA’s use-by date, and it appears somewhat unknown what the risks are using them. Replacing them however will entail a significant delay, from three to six months.

As I said this weekend, NASA managers face no good choice, because of the impractical and inefficient design of this rocket.

Ganymede as seen by Juno

Ganymede as seen by Juno
Click to see full image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on June 7, 2021 when Juno made a close fly-by of Jupiter’s moon Ganymede. It has been reprocessed to bring out the details by citizen scientist Brian Swift.

Note the bands and parallel light and dark ridges that criss-cross the planet. Scientist as yet do not understand what caused them. Note also the bright impact craters, suggesting the release of water ice from below.

This image anticipates Juno’s upcoming September 29, 2022 fly-by of Europa, one of Jupiter’s other Galilean moons. The orbiter will pass only 221 miles above its surface, and get the best images in decades, since the Galileo mission in the 1990s.

China’s Kuaizhou-1A rocket launches two satellites

Early today China’s smallsat Kuaizhou-1A rocket successfully launched two “experimental” satellites into orbit from an interior spaceport.

The satellites are part of a classified program, so little is known about them.

The leaders in the 2022 launch race:

43 SpaceX
39 China
12 Russia
7 Rocket Lab
6 ULA

American private enterprise still leads China 60 to 39 in the national rankings and the entire world combined 60 to 59.

Tomorrow ABL Space will attempt to launch from Alaska its RS1 smallsat rocket for the first time. Later in the week Firefly will make its second attempt to launch its Alpha rocket successfully. I will embed the live streams, if available.

NASA managers might forego SLS rollback and aim for Oct 2nd launch

Based on the present hurricane track, NASA managers are considering the possibility of leaving SLS on the launchpad so that they can go for a launch on October 2, 2022.

NASA managers will meet this evening to evaluate whether to roll back or remain at the launch pad to preserve an opportunity for a launch attempt on Oct. 2. The exact time of a potential rollback will depend on future weather predictions throughout the day and could occur Monday or very early Tuesday morning.

If they stay on the launchpad, it means the flight termination system is questionable at launch. If the rocket goes out of control during its first test launch — a not-unreasonable possibility for a new rocket — there is a chance the range officer will not be able to destroy it.

If they roll back to the assembly building, it means the rocket’s two solid strap-on boosters will either have to be replaced, delaying the launch months more, or the rocket will launch with two boosters that are questionable.

Every choice they face is a bad one, simply because this rocket is really not well designed for practical use.

SpaceX successfully launches 52 Starlink satellites

Capitalism in space: Using its Falcon 9 rocket SpaceX today successfully put another 52 Starlink satellites into orbit.

The first stage successfully landed on a drone ship in the Atlantic, completing its fourth flight. The two fairing halves each completed their fourth and fifth flights, respectively.

Note: The Biden administration yesterday gave SpaceX the okay to activate Starlink in Iran, in order to provide that country’s citizens an option for obtaining information blocked by its government.

The leaders in the 2022 launch race:

43 SpaceX
38 China
12 Russia
7 Rocket Lab
6 ULA

American private enterprise now leads China 60 to 38 in the national rankings, and the entire world combined 60 to 58.

ULA’s Delta Heavy successfully launches spy satellite for NRO

ULA today has successfully launched a spy satellite for the National Reconnaissance Office from Vandenberg Space Force Base in California, using its Delta Heavy rocket, its largest rocket.

With this launch, ULA retires the Delta from any further launches from Vandenberg. Future California launches will use its as yet untested Vulcan rocket.

The leaders in the 2022 launch race:

42 SpaceX
38 China
12 Russia
7 Rocket Lab
6 ULA

American private enterprise now leads China 59 to 38 in the national rankings, and the entire world combined 59 to 58. The 59 launches makes this the third most active launch year in American history, trailing only 1966 (70 launches) and 1965 (64 launches).

SpaceX has a Falcon 9 launch of 52 Starlink satellites scheduled very shortly, so these numbers will hopefully go up again before the day is out.

1 117 118 119 120 121 476