Lucy update: cause of solar array issue identified
According to the principal scientist for the Lucy asteroid mission, engineers think they have identified what caused one of Lucy’s two fanlike solar arrays to fail to deploy completely.
The +Y array, rather than unfurling a full 360 degrees, instead went 347 degrees. In that configuration, the spacecraft is still generating more than 90% of its expected power. “Power is not an issue for the spacecraft, nor will it be through the entire mission if we have to fly it like it is.”
The arrays unfurl when a motor pulls on a lanyard, swinging one end of the array around and into place. Levison said that the most likely reason the array did not latch is that, for some reason, there was a loss of tension in the lanyard during deployment. That caused it to fall off a spool and wrap around the motor shaft. About 75 centimeters of lanyard remains to be pulled in.
It appears they in April will turn on the array’s motor to try to pull the lanyard in that last little bit. If that doesn’t work, they will then simply leave things as they are, as it appears the array is open enough to give them sufficient power for their mission.
There are risks to that course, however. Because the array is not latched open, it could begin to close, and thus result in less power to the spacecraft. Furthermore, its unlatched state appears to make some planned engine burns too risky.
According to the principal scientist for the Lucy asteroid mission, engineers think they have identified what caused one of Lucy’s two fanlike solar arrays to fail to deploy completely.
The +Y array, rather than unfurling a full 360 degrees, instead went 347 degrees. In that configuration, the spacecraft is still generating more than 90% of its expected power. “Power is not an issue for the spacecraft, nor will it be through the entire mission if we have to fly it like it is.”
The arrays unfurl when a motor pulls on a lanyard, swinging one end of the array around and into place. Levison said that the most likely reason the array did not latch is that, for some reason, there was a loss of tension in the lanyard during deployment. That caused it to fall off a spool and wrap around the motor shaft. About 75 centimeters of lanyard remains to be pulled in.
It appears they in April will turn on the array’s motor to try to pull the lanyard in that last little bit. If that doesn’t work, they will then simply leave things as they are, as it appears the array is open enough to give them sufficient power for their mission.
There are risks to that course, however. Because the array is not latched open, it could begin to close, and thus result in less power to the spacecraft. Furthermore, its unlatched state appears to make some planned engine burns too risky.