An infrared view of the Crab Nebula by Webb

Webb's image of the Crabb compared to Hubble's
Click for original image.

Using the Webb Space Telescope astronomers have taken the first detailed infrared image of the Crab Nebula, the remnant from a supernova that occurred in 1054 AD.

The two pictures on the right compare Webb’s false color infrared view with a natural light Hubble image in optical wavelengths, taken in 2005. From the press release:

The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in red-orange), ionized iron (blue), dust (yellow-white and green), and synchrotron emission (white). In this image, colors were assigned to different filters from Webb’s NIRCam and MIRI: blue (F162M), light blue (F480M), cyan (F560W), green (F1130W), orange (F1800W), and red (F2100W).

In comparing the images, it appears the scientists chose colors for the Webb image to more or less match those of Hubble’s natural color picture. However, as the press release notes:

Additional aspects of the inner workings of the Crab Nebula become more prominent and are seen in greater detail in the infrared light captured by Webb. In particular, Webb highlights what is known as synchrotron radiation: emission produced from charged particles, like electrons, moving around magnetic field lines at relativistic speeds. The radiation appears here as milky smoke-like material throughout the majority of the Crab Nebula’s interior.

This feature is a product of the nebula’s pulsar, a rapidly rotating neutron star. The pulsar’s strong magnetic field accelerates particles to extremely high speeds and causes them to emit radiation as they wind around magnetic field lines. Though emitted across the electromagnetic spectrum, the synchrotron radiation is seen in unprecedented detail with Webb’s NIRCam instrument.

The release also notes this remarkable but somewhat unfortunate fact:

Scientists will have newer Hubble data to review within the next year or so from the telescope’s reimaging of the supernova remnant. This will mark Hubble’s first look at emission lines from the Crab Nebula in over 20 years, and will enable astronomers to more accurately compare Webb and Hubble’s findings.

In 2005 repeated Hubble images of the Crab revealed that its filaments and radiation were stormy, with constant activity. The scientists actually produced a movie of those changes. It was expected that new images would be taken at regular intervals to track that activity. Apparently it was not, either because no scientist was interested or the committee that assigns time on Hubble decided this wasn’t important enough reseach.

Webb detects high altitude jet stream above Jupiter’s equatorial band

Jupiter's newly discovered jet stream
Click for original false-color infrared image.

Using the Webb Space Telescope’s infrared capability, scientists have now detected a high altitude jet stream that flows above the equatorial band of Jupiter at speeds estimated to 320 miles per hour.

The false-color infrared image to the right shows evidence of this jetstream in three places by the brightest features seen there. From the caption:

In this image, brightness indicates high altitude. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

These features sit about 25 miles higher than the planet’s previously detected cloudtops.

This discovery only proves what has always been evident, that Jupiter’s atmosphere is very complex with many features earlier optical observations could not see. It also only gives us a hint of that complexity. It will take numerous Jupiter orbiters observing in all wavebands, not just Webb in the infrared millions of miles away, to begin to untangle that complexity. And that untangling will take decades as well, since global weather unfolds over time. You can’t understand it simply by one snapshot. You have to watch the changes from season to season and from year to year. As Jupiter’s year is 12 Earth-years long, this research will take many lifetimes.

Astronomers detect nano-sized quartz crystals in atmosphere of exoplanet

Using both the Hubble and Webb space telescopes in space, astronomers have detected nano-sized quartz crystals in the atmosphere of a Jupiter-class exoplanet orbiting its star every 3.7 days.

Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone – which is pure SiO2.

The result from this team, which also includes researchers from NASA’s Ames Research Center and NASA’s Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. “We fully expected to see magnesium silicates,” said co-author Hannah Wakeford, also from the University of Bristol. “But what we’re seeing instead are likely the building blocks of those, the tiny ‘seed’ particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs.”

These tiny quartz crystals are condensing out in the clouds themselves, due to the high temperatures and pressures there. The exoplanet itself is unusual because though its mass is one half that of Jupiter, its volume is seven times larger. This gives it a very large and deep atmosphere, thus providing the environment for crystal formation.

Webb takes an infared look at Saturn

Webb's five images of Saturn
Webb’s five images of Saturn. Click for original.

Using the Webb Space Telescope, scientists have obtained five infrared images of Saturn to get a more detailed look at the gas giant’s atmosphere and the molecules within it.

The image to the right is Figure 1 from the paper, showing the location of those five images on Saturn, placed over a much higher resolution Hubble Space Telescope optical image. The graph on the bottom shows the molecules revealed from spectroscopic data obtained by Webb’s infrared view. From the abstract:

We show evidence that a stratospheric circulation pattern detected by Cassini during northern winter has now fully reversed in northern summer, with the low-latitude stratosphere being cool and depleted in aerosols due to summertime upwelling. MIRI [Webb’s mid-infrared instrument] provides access to spectral regions that were not possible with the Cassini spacecraft, particularly in the 5–7 μm region where reflected sunlight and thermal emission blend together. Ammonia and phosphine are enriched at Saturn’s equator, suggesting strong mixing from the deeper troposphere. MIRI’s high sensitivity enables the first identification of previously unseen emission propane bands, along with the first measurements of the distribution of several gaseous species: tropospheric water, and stratospheric ethylene, benzene, methyl, and carbon dioxide.

The paper notes that this work still has uncertainty because when the infrared images were taken engineers were still working out the kinks for using Webb. Nonetheless, the results illustrate the large potential for future planetary discoveries from Webb.

Webb infrared data suggests Europa’s C02 comes from within

Europa as seen by Webb's near-infrared camera
Europa as seen by Webb’s near-infrared camera.
Click for original image.

Two different research papers, using infrared data from the Webb Space Telescope, have independently concluded that the carbon dioxide previously detected on the surface of Europa is found concentrated in the same region, and has the earmarks of coming from beneath the surface.

In one study, Samantha Trumbo and Michael Brown used the JWST [Webb] data to map the distribution of CO2 on Europa and found the highest abundance of CO2 is located in Tara Regio – a ~1,800 square kilometer region dominated by “chaos terrain,” geologically disrupted resurfaced materials. According to Tumbo and Brown, the amount of CO2 identified within this recently resurfaced region – some of the youngest terrain on Europa’s surface – indicates that it was derived from an internal source of carbon. This implies that the CO2 formed within Europa’s subsurface ocean and was brought to the surface on a geologically recent timescale. However, the authors say that formation of CO2 on the surface from ocean-derived organics or carbonates cannot be entirely ruled out. In either interpretation, the subsurface ocean contains carbon.

In an independent study of the same JWST data, Geronimo Villanueva and colleagues found that the CO2 on Europa’s surface is mixed with other compounds. Villanueva et al. also find the CO2 is concentrated in Tara Regio and interpret that as demonstrating that the carbon on the moon’s surface was sourced from within. The authors measured the ice’s 12C/13C isotopic ratio, but could not distinguish between an abiotic or biogenic source. Moreover, Villanueva et al. searched for plumes of volatile material breaching moon’s icy crust. Although previous studies have reported evidence of these features, the authors did not detect any plume activity during the JWST observations. They argue that plume activity on Europa could be infrequent, or sometimes does not contain the volatile gasses they included in their search.

As always, these conclusion must be viewed with some skepticism, as the data is somewhat sparse and coarse. Webb’s resolution is not enough to truly pinpoint the source location with great accuracy, and the conclusion that the CO2 comes from underground depends on many assumptions. For example, in the image above, the white area roughly corresponds to Tara Regio, but with very large margins.

Webb captures new infrared image of bi-polar jets shooting from baby star

HH 211 as seen by Webb
Click for original image.

Using the Webb Space Telescope, astronomers have taken a new infrared image of the baby star Herbig-Haro 211 (HH 211), known best for the bi-polar jets that shoot out in opposite directions at very great speeds.

That picture is to the right, reduced and sharpened to post here, and has about 5 to 10 times the resolution of previous infrared images.

The image showcases a series of bow shocks to the southeast (lower-left) and northwest (upper-right) as well as the narrow bipolar jet that powers them. …. The inner jet is seen to “wiggle” with mirror symmetry on either side of the central protostar. This is in agreement with observations on smaller scales and suggests that the protostar may in fact be an unresolved binary star.

Earlier observations of HH 211 with ground-based telescopes revealed giant bow shocks moving away from us (northwest) and moving towards us (southeast) and cavity-like structures in shocked hydrogen and carbon monoxide respectively, as well as a knotty and wiggling bipolar jet in silicon monoxide. Researchers have used Webb’s new observations to determine that the object’s outflow is relatively slow in comparison to more evolved protostars with similar types of outflows.

The team measured the velocities of the innermost outflow structures to be roughly 48-60 miles per second (80 to 100 kilometers per second). However, the difference in velocity between these sections of the outflow and the leading material they’re colliding with — the shock wave — is much smaller. The researchers concluded that outflows from the youngest stars, like that in the center of HH 211, are mostly made up of molecules, because the comparatively low shock wave velocities are not energetic enough to break the molecules apart into simpler atoms and ions.

The baby star at the center of these jets, about a 1,000 light years away, is estimated to be only a few ten thousand years old, and presently has a mass less than a tenth of the Sun. With time it will accrete more matter and become a full-sized star.

Webb takes infrared image of Supernova SN1987A

Annotated infrared image from Webb
Click for original image.

The Webb Space Telescope has taken its first infrared image of Supernova SN1987A, the closest supernova to Earth in five centuries at a distance of 168,000 light years away in the nearby Large Magellanic Cloud.

The annotated image to the right, cropped, reduced, and sharpened to post here, shows that supernova remnant as Webb sees it. Most of the structures identified here have been observed now for decades as the material from the explosion has been expanding outward. However,

While these structures have been observed to varying degrees
by NASA’s Hubble and Spitzer Space Telescopes and Chandra X-ray Observatory, the unparalleled sensitivity and spatial resolution of Webb revealed a new feature in this supernova remnant – small crescent-like structures. These crescents are thought to be a part of the outer layers of gas shot out from the supernova explosion. Their brightness may be an indication of limb brightening, an optical phenomenon that results from viewing the expanding material in three dimensions. In other words, our viewing angle makes it appear that there is more material in these two crescents than there actually may be. [emphasis mine]

I highlight that one word because it is unnecessary, and is only inserted to punch up Webb’s abilities for public relations purposes. Moreover, the rest of the text of the full press release at the link is even worse. It provides little information about the evolution of this supernova since its discovery more than three decades ago, but instead waxes poetic again and again about how wonderful Webb is.

Though Webb certainly has much higher resolution than the earlier infrared space telescope Spitzer and can do far more, this tendency of NASA press releases to use these superlatives only devalues Webb. The images themselves sell the telescope. No need to oversell it in the text.

Meanwhile, the significance of SN 1987A is not explained. Since the development of the telescope by Galileo in the early 1600s, there has been no supernova inside the Milky Way. SN 1987A has been the closest, so it has been photographed repeatedly in multiple wavelengths to track the evolution of the explosion’s ejecta. Webb now gives us a better look in the infrared, though in truth the small amount of new details is actually somewhat disappointing.

Webb confirms galaxy as one of the earliest known in the universe

The uncertainty of science: Using the spectroscopic instrument on the Webb Space Telescope, scientists have confirmed that one of the first galaxies found by Webb, dubbed Maisie’s Galaxy after the daughter of one scientist, is one of the earliest known in the universe, existing only 390 million years after when cosmologies say the Big Bang happened.

The data also showed that another one of these early galaxies spotted by Webb did not exist 250 million years after the Big Bang, but one billion years after, a date that better fits the theories about the early universe, based on the nature of this galaxy.

It turns out that hot gas in CEERS-93316 was emitting so much light in a few narrow frequency bands associated with oxygen and hydrogen that it made the galaxy appear much bluer than it really was. That blue cast mimicked the signature Finkelstein and others expected to see in very early galaxies. This is due to a quirk of the photometric method that happens only for objects with redshifts of about 4.9. Finkelstein says this was a case of bad luck. “This was a kind of weird case,” Finkelstein said. “Of the many tens of high redshift candidates that have been observed spectroscopically, this is the only instance of the true redshift being much less than our initial guess.”

Not only does this galaxy appear unnaturally blue, it also is much brighter than our current models predict for galaxies that formed so early in the universe. “It would have been really challenging to explain how the universe could create such a massive galaxy so soon,” Finkelstein said. “So, I think this was probably always the most likely outcome, because it was so extreme, so bright, at such an apparent high redshift.”

This science team is presently using Webb’s spectroscope to study ten early galaxies in order to better determine their age. Expect more results momentarily.

Scientists release infrared image of the Ring nebula, taken by Webb

The Ring Nebula, in false color by Webb
Click for original image.

Scientists yesterday released the first false-color infrared image of the Ring nebula taken by the Webb Telescope. That image, cropped to post here, is to the right. From the press release, which is heavy with platitudes but little information:

Approximately 2,600 lightyears away from Earth, the nebula was born from a dying star that expelled its outer layers into space. What makes these nebulae truly breath-taking is their variety of shapes and patterns, that often include delicate, glowing rings, expanding bubbles or intricate, wispy clouds. These patterns are the consequence of the complex interplay of different physical processes that are not well understood yet. Light from the hot central star now illuminates these layers.

Just like fireworks, different chemical elements in the nebula emit light of specific colours. This then results in exquisite and colourful objects, and furthermore allows astronomers to study the chemical evolution of these objects in detail.

It appears this image was produced using Webb’s near infrared instrument. Further data from its mid-infrared instrument has not yet been released. For a Hubble image of the Ring Nebula, in optical light that the human eye sees, go here.

Infrared Webb image of a binary baby star system and its surrounding jets and nebula

Webb infrared image of HH 46/47
Click for original image.

Cool image time! The infrared picture to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope of the jets and nebula of the Herbig–Haro object dubbed HH 46/47, thought to contain a pair of baby stars under formation.

The most striking details are the two-sided lobes that fan out from the actively forming central stars, represented in fiery orange. Much of this material was shot out from those stars as they repeatedly ingest and eject the gas and dust that immediately surround them over thousands of years.

When material from more recent ejections runs into older material, it changes the shape of these lobes. This activity is like a large fountain being turned on and off in rapid, but random succession, leading to billowing patterns in the pool below it. Some jets send out more material and others launch at faster speeds. Why? It’s likely related to how much material fell onto the stars at a particular point in time.­­­

The stars’ more recent ejections appear in a thread-like blue. They run just below the red horizontal diffraction spike at 2 o’clock. Along the right side, these ejections make clearer wavy patterns. They are disconnected at points, and end in a remarkable uneven light purple circle in the thickest orange area. Lighter blue, curly lines also emerge on the left, near the central stars, but are sometimes overshadowed by the bright red diffraction spike.

To see optical images of HH 46/47 as well as some further background, go here. It is one of the most studied HH objects, which is why it was given priority in Webb’s early observation schedule.

Scientists claim discovery of most distant supermassive black hole yet

The overwhelming uncertainty of some science: Using data from the infrared Webb Space Telescope, scientists are now claiming they have discovered most distant supermassive black hole yet, sitting at the center of an active galaxy only about a half billion years after the Big Bang. From the press release:

The galaxy, CEERS 1019, existed just over 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe. Not only that, they’ve easily “shaken out” two more black holes that are also on the smaller side, and existed 1 and 1.1 billion years after the big bang. Webb also identified eleven galaxies that existed when the universe was 470 to 675 million years old. The evidence was provided by Webb’s Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein of the University of Texas at Austin. The program combines Webb’s highly detailed near- and mid-infrared images and data known as spectra, all of which were used to make these discoveries.

CEERS 1019 is not only notable for how long ago it existed, but also how relatively little its black hole weighs. This black hole clocks in at about 9 million solar masses, far less than other black holes that also existed in the early universe and were detected by other telescopes. Those behemoths typically contain more than 1 billion times the mass of the Sun – and they are easier to detect because they are much brighter. (They are actively “eating” matter, which lights up as it swirls toward the black hole.) The black hole within CEERS 1019 is more similar to the black hole at the center of our Milky Way galaxy, which is 4.6 million times the mass of the Sun. This black hole is also not as bright as the more massive behemoths previously detected. Though smaller, this black hole existed so much earlier that it is still difficult to explain how it formed so soon after the universe began.

I have great doubts about this research, especially because the press release makes no effort to explain how the black holes were identified. Black holes emit no light, and were only first confirmed by watching the orbits of stars or objects near them over long periods of time. More distant supermassive black holes in the center of galaxies were later guessed at by what appears to be the relationship between the size of a galaxy’s nucleus and the presence of a black hole. Astronomers also assume that a very active and energetic galaxy (such as a quasar) is a sign a supermassive black hole exists at the center.

These primitive galaxies have only been observed at most a handful of times. They are so distant that they only are at most a few pixels wide. Spectra from these objects can tell us roughly how far away they are, and thus how close to the Big Bang they are thought to be, but it is impossible to say with any certainty that there is a black hole there.

I am made even more skeptical by this press release claim: “Webb’s data are practically overflowing with precise information that makes these confirmations so easy to pull out of the data.” Such language makes me suspicious that there is an underlying effort to justify Webb’s expense with this release by overstating its capabilities.

The press release provides links to the research. Take a look. I’d be glad if someone could clearly show me why I’m wrong to be so doubtful.

Galaxies at the dawn of time

Link here. The article takes a quick look at six galaxies found by Webb’s infrared view that all less than 650 million years after the Big Bang is thought to have occurred.

None disprove the Big Bang. All however raise serious questions about the cosmological theories that posit that event and the subsequent evolution of the universe. Take a look. It is worthwhile reading.

Webb takes infrared (heat) image of Saturn

Saturn in infrared
Click for original image.

Using the Webb Space Telescope, scientists on June 25, 2023 took the wonderful false color infrared (heat) image of Saturn above, cropped to post here, as part of a research project [pdf] to take a number of long exposures of the ringed planet in order to test Webb’s ability to see its small moons. From the press release:

Saturn itself appears extremely dark at this infrared wavelength observed by the telescope, as methane gas absorbs almost all of the sunlight falling on the atmosphere. However, the icy rings stay relatively bright, leading to the unusual appearance of Saturn in the Webb image.

…This new image of Saturn clearly shows details within the planet’s ring system, along with several of the planet’s moons – Dione, Enceladus, and Tethys. Additional deeper exposures (not shown here) will allow the team to probe some of the planet’s fainter rings, not visible in this image, including the thin G ring and the diffuse E ring. Saturn’s rings are made up of an array of rocky and icy fragments – the particles range in size from smaller than a grain of sand to a few as large as mountains on Earth.

The picture also shows differences between Saturn’s northern and southern hemispheres, caused by the seasonal differences between the two.

Host galaxies for two quasars in early universe detected for the first time

Quasar and host galaxy
One of the quasars, with its light subtracted on the right,
revealing the host galaxy. Click for original image.

The uncertainty of science: Using data from both the infrared Webb Space Telescope and the Subaru optical telescope in Hawaii, astronomers have observed for the first time the host galaxies of two quasars that formed less than a billion years after the Big Bang.

Just a few months after JWST started regular operations, the team observed two quasars, HSC J2236+0032 and HSC J2255+0251, at redshifts 6.40 and 6.34 when the universe was approximately 860 million years old, both of which were discovered using Subaru Telescope’s deep survey program. The relatively low luminosities of these quasars made them prime targets for measuring the properties of their host galaxies.

The images of the two quasars were taken at infrared wavelengths of 3.56 and 1.50 microns with JWST’s NIRCam instrument, and the host galaxies became apparent after carefully modeling and subtracting glare from the accreting black holes. The stellar signature of the host galaxy was also seen in a spectrum taken by JWST’s NIRSPEC for J2236+0032, further supporting the detection of the host galaxy.

Photometric analyses found that these two quasar host galaxies are massive, measuring 130 and 34 billion times the mass of the Sun, respectively. Measuring the speed of the turbulent gas in the vicinity of the quasars from the NIRSPEC spectra suggests the black holes that power them are also massive, measuring 1.4 and 0.2 billion times the mass of the Sun. The ratio of the black hole to host galaxy mass is similar to those of galaxies in the more recent past, suggesting that the relationship between black holes and their hosts was already in place 860 million years after the Big Bang. [emphasis mine]

Normally, quasars are so bright the host galaxy is obscured. Computer modeling that subtracted the quasar’s light produced the host galaxy image on the right.

The highlighted sentence raises intriguing questions again about the Big Bang. Webb is once again finding evidence that the early universe quickly became like today’s universe, much faster than expected by cosmologists.

Webb makes first detection of one particular carbon molecule

The uncertainty of science: Using the Webb Space Telescope, astronomers have made the first detection of methyl cation (pronounced cat-eye-on) (CH3+) in space, located in a baby solar system the star-forming region of the Orion nebula about 1,350 light years away.

While the star in d203-506 is a small red dwarf, the system is bombarded by strong ultraviolet (UV) light from nearby hot, young, massive stars. Scientists believe that most planet-forming disks go through a period of such intense UV radiation, since stars tend to form in groups that often include massive, UV-producing stars.

Typically, UV radiation is expected to destroy complex organic molecules, in which case the discovery of CH3+ might seem to be a surprise. However, the team predicts that UV radiation might actually provide the necessary source of energy for CH3+ to form in the first place. Once formed, it then promotes additional chemical reactions to build more complex carbon molecules.

Broadly, the team notes that the molecules they see in d203-506 are quite different from typical protoplanetary disks. In particular, they could not detect any signs of water. [emphasis mine]

In the next day or so we shall likely see a number of stories in the mainstream press shouting some variation of “Webb finds key element of life!” Webb has done no such thing. It has found a carbon molecule not seen previously, which simply provides scientists another small data point in trying to understand the development of complex solar systems.

The highlighted sentences make clear the uncertainty in this field and the general shallow amount of knowledge. For example, why carbon molecules but no water, which is made up of hydrogen and oxygen, both ubiquitous throughout the universe and found in large amounts in star-forming regions?

Webb’s first deep field infrared image reveals hundreds of very early galaxies

The uncertainty of science: Using the Webb Space Telescope to take a 32-day-long infrared exposure, scientists have obtained the deepest deep field picture of the universe’s earliest time period, within which they have found more than 700 galaxies, 717 to be exact.

The initial survey of these galaxies appear to reveal several facts.

About a sixth of early galaxies in the JADES sample are in the throes of star formation of a kind we don’t see in the nearby universe, Endsley explains, marked by extremely bright emission at certain wavelengths. “Stars within very early galaxies are forming in these super-compact clumps,” he adds, “forming hundreds, perhaps thousands of these very massive, young stars all at once, basically within the span of a couple millions of years.”

But they weren’t “on” all the time. The low fraction of galaxies with such emission suggests that individual clumps would suddenly light up with new stars and then rest for some time. This “bursty” mode of star formation could explain the unexpectedly bright galaxies announced by other astronomers — they were simply looking at the galaxies fired up with unexpectedly intense star formation.

However, while these findings explain too-bright galaxies, they don’t explain the too-massive galaxies, another early, albeit controversial find from JWST data. Endsley explains that even as hot, massive newborn stars light up their galaxy, they’re not necessarily associated with all that much mass. “We’re not really finding evidence of these over-massive objects within our JADES sample,” he states.

In other words, this data appears to contradict earlier data from Webb that other researchers said revealed galaxies that were too massive and developed to have formed that soon after the Big Bang.

All of this data remains somewhat uncertain, and is based on only tiny tidbits of information, gleaned from mere smudges of red-shifted infrared light. Much more research will be required, some not possible by Webb, before we have any solid answers, and even then there is going to be a lot of uncertainty.

Webb detects large water plume released from Saturn’s moon Enceladus

Water vapor plume seen by Webb
Click for original image.

Using the infrared cameras on the Webb Space Telescope, astronomers have detected a surprisingly long and large plume of water vapor erupting from the tiger stripe fractures on Saturn’s moon Enceladus that scientists for years have detected vapor plumes.

The false color image to the right shows that plume.

A water vapor plume from Saturn’s moon Enceladus spanning more than 6,000 miles – nearly the distance from Los Angeles, California to Buenos Aires, Argentina – has been detected by researchers using NASA’s James Webb Space Telescope. Not only is this the first time such a water emission has been seen over such an expansive distance, but Webb is also giving scientists a direct look, for the first time, at how this emission feeds the water supply for the entire system of Saturn and its rings.

…The length of the plume was not the only characteristic that intrigued researchers. The rate at which the water vapor is gushing out, about 79 gallons per second, is also particularly impressive. At this rate, you could fill an Olympic-sized swimming pool in just a couple of hours. In comparison, doing so with a garden hose on Earth would take more than 2 weeks.

Though that rate of release sounds large, we must remember it is being released from a moon 313 miles across. From that perspective the rate of flow is quite reasonable.

Webb and Chandra take composite X-ray/infrared images of four famous objects

Composite Chandra/Webb image of M16
Click for original image.

Astronomers have now used the Chandra X-ray Observatory and Webb Space Telescope (working in the infrared) to produce spectacular composite false-color X-ray/infrared images of four famous heavenly objects.

To the right is the composite taken of the Eagle Nebula, also known as Messier 16. It was also dubbed the Pillars of Creation when it was one of the first Hubble images taken after the telescope’s mirror focus was fixed in 1993. From the caption:

The Webb image shows the dark columns of gas and dust shrouding the few remaining fledgling stars just being formed. The Chandra sources, which look like dots, are young stars that give off copious amounts of X-rays. (X-ray: red, blue; infrared: red, green, blue)

The other images include star cluster NGC 346 in a nearby galaxy, the spiral galaxy NGC 1672, and the face-on spiral galaxy Messier 74.

Webb takes infrared image of the disk of dust and debris surrounding Fomalhaut

Fomalhaut debris disk as seen in the infrared by Webb
Click for original image.

Using the mid-infrared instrument on the Webb Space Telescope, astronomers have obtained a new high resolution infrared image of the disk of dust and debris that surrounds the star Fomalhaut, and (surprise!) have it to be more complex than they previously believed.

That image is to the right, annotated by the science team.

Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that’s 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system’s Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts – which had never been seen before – were revealed by Webb for the first time.

The dust cloud identified in the outer ring is possibly left over from a recent collusion of larger bodies.

Webb snaps infrared picture of Uranus

Uranus as seen in the infrared by Webb
Click for original Webb false-color image.

In a follow-up to a recent Hubble Space Telescope optical image of Uranus, scientists have now used the Webb Space Telescope to take a comparable picture in the infrared of the gas giant.

Both pictures are to the right, with the Webb picture at the top including the scientists’ annotations.

On the right side of the planet there’s an area of brightening at the pole facing the Sun, known as a polar cap. This polar cap is unique to Uranus – it seems to appear when the pole enters direct sunlight in the summer and vanish in the fall; these Webb data will help scientists understand the currently mysterious mechanism. Webb revealed a surprising aspect of the polar cap: a subtle enhanced brightening at the center of the cap. The sensitivity and longer wavelengths of Webb’s NIRCam may be why we can see this enhanced Uranus polar feature when it has not been seen as clearly with other powerful telescopes like the Hubble Space Telescope and Keck Observatory.

At the edge of the polar cap lies a bright cloud as well as a few fainter extended features just beyond the cap’s edge, and a second very bright cloud is seen at the planet’s left limb. Such clouds are typical for Uranus in infrared wavelengths, and likely are connected to storm activity.

The Webb image also captures 11 of Uranus’s 13 rings, which appear much brighter in the infrared than in the optical.

Unlike all other planets in the solar system, Uranus’s rotation is tilted so much that it actually rolls as it orbits the Sun, a motion that is obvious by comparing these pictures with Hubble’s 2014 optical picture.

Webb finds Earth-sized exoplanet likely too hot to have atmosphere

The uncertainty of science: Using the infrared Webb Space Telescope, scientists have measured the temperature of the Earth-sized exoplanet, dubbed Trappist-1b, and found its temperature is probably too hot to have atmosphere.

The red dwarf star Trappist-1is about 40 light years from Earth, and in 2017 was found to have a solar system of seven exoplanets, all rocky terrestrial planets like the inner planets of our solar system. Trappist-1b is the innermost exoplanet. To measure its temperature, Webb observed the star while the planet was eclipsed by the star as well as when it was not, and measured the tiny difference in infrared light.

The team analyzed data from five separate secondary eclipse observations. “We compared the results to computer models showing what the temperature should be in different scenarios,” explained Ducrot. “The results are almost perfectly consistent with a blackbody made of bare rock and no atmosphere to circulate the heat. We also didn’t see any signs of light being absorbed by carbon dioxide, which would be apparent in these measurements.”

As this was the innermost of the star’s solar system, it is also the one most likely to lack an atmosphere. Webb’s observations of the system continue, so there is a chance that data about the other exoplanets will eventually tell us more about them.

Webb detects “hot sand clouds” in atmosphere of exoplanet

Using the Webb Space Telescope, astronomers have detected “hot sand clouds” in atmosphere of exoplanet 40 light years away, along with evidence of water, methane, carbon monoxide, carbon dioxide, sodium, and potassium.

You can read the paper here [pdf]. The exoplanet itself appears to have some features that resemble that of a brown dwarf, or failed star, instead of an exoplanet.

Although VHS 1256 b is more on the heavier side of the known exoplanets, its gravity is relatively low compared to more massive brown dwarfs. Such very low-mass stars can only burn deuterium for a relatively short duration. Consequently, the planet’s silicate clouds can appear and remain higher in its atmosphere, where the JWST can detect them. Another reason its skies are so turbulent is the planet’s age. In astronomical terms, it is pretty young. Only 150 million years have passed since it formed. The planet’s heat stems from the recent formation process – and it will continue to change and cool over billions of years.

The sand clouds are hot, in the range of 1,500 degrees Fahrenheit.

These results were obtained as part of an early-release program from Webb, and illustrate the potential of the infrared space telescope for learning many specific details about brown dwarfs and exoplanets.

Webb finds another galaxy in early universe that should not exist

The uncertainty of science: Scientists using the Webb Space Telescope have identified another galaxy about 12 billion light years away and only about 1.7 billion years after the theorized Big Bang that is too rich in chemicals as well as too active in star formation to have had time to form.

SPT0418-SE is believed to have already hosted multiple generations of stars, despite its young age. Both of the galaxies have a mature metallicity — or large amounts of elements like carbon, oxygen and nitrogen that are heavier than hydrogen and helium — which is similar to the sun. However, our sun is 4.5 billion years old and inherited most of its metals from previous generations of stars that were eight billion years old, the researchers said.

In other words, this galaxy somehow obtained complex elements in only 1.7 billion years that in our galaxy took twelve billion years, something that defies all theories of galactic and stellar evolution. Either the Big Bang did not happen when it did, or all theories about the growth and development of galaxies are wrong.

One could reasonably argue that this particular observation might be mistaken, except that it is not the only one from Webb that shows similar data. Webb’s infrared data is challenging the fundamentals of all cosmology, developed by theorists over the past half century.

Webb spots massive galaxies in the early universe that should not exist at that time

The uncertainty of science: Astronomers using the Webb Space Telescope have identified six galaxies that are far too massive and evolved to have formed so quickly after the Big Bang.

The research, published today in Nature, could upend our model of the Universe and force a drastic rethink of how the first galaxies formed after the Big Bang. “We’ve never observed galaxies of this colossal size, this early on after the Big Bang,” says lead researcher Associate Professor Ivo Labbé from Swinburne University of Technology.

“The six galaxies we found are more than 12 billion years old, only 500 to 700 million years after the Big Bang, reaching sizes up to 100 billion times the mass of our sun. This is too big to even exist within current models.

You can read the paper here [pdf]. The “current models” Labbé is referring to are all the present theories and data that say the Big Bang occurred 13.7 billion years ago. These galaxies, however, found less than a billion years after that event, would have needed 12 billion years to have accumulated their mass.

If confirmed, these galaxies essentially tell us that the Big Bang is wrong, or very very VERY incomplete, and that all the data found that dates its occurrence 13.7 billion years ago, based on the Hubble constant, must be reanalyzed.

It is also possible these galaxies are actually not galaxies, but a new kind of supermassive black hole able to form very quickly. Expect many scientists who are heavily invested in the Big Bang to push for this explanation. It might be true, but their biases are true also, which means that Webb is presenting us with new data that calls for strong skepticism of all conclusions, across the board.

A galaxy’s structure of gas and dust, as seen in the infrared by Webb

NGC 1433 as seen in the infrared
NGC 1433 as seen in the infrared. Click for original image.

Scientists have now released 21 papers on the gas and dust structures in nearby galaxies, based on infrared images from the Webb Space Telescope, used in collaboration with other telescopes looking in other wavelengths.

The largest survey of nearby galaxies in Webb’s first year of science operations is being carried out by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, involving more than 100 researchers from around the globe. The Webb observations are led by Janice Lee, Gemini Observatory chief scientist at the National Science Foundation’s NOIRLab and affiliate astronomer at the University of Arizona in Tucson.

The team is studying a diverse sample of 19 spiral galaxies, and in Webb’s first few months of science operations, observations of five of those targets – M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433 – have taken place.

The image to the right is Webb’s infrared image of NGC 1433, estimated to be 46 million light years away. The bright areas extending outward in the spiral arms are believed to be star-forming regions. From the caption:

At the center of the galaxy, a tight, bright core featuring a unique double ring structure shines in exquisite detail with Webb’s extreme resolution. In this case, that ‘double ring’ is actually tightly wrapped spiral arms that wind into an oval shape along the galaxy’s bar.

NGC 1433 is a Seyfert galaxy, which are typically relatively close to Earth and has a supermassive black hole at the center eating material at a high rate. The brightness and lack of dust in the MIRI image of NGC 1433 could hint at a recent collision with another galaxy.

When comparing Webb’s infrared view with Hubble’s optical view, taken in 2014 and found here, the differences are definitely striking. Webb sees the gas and dust that is dark in Hubble’s images, while Hubble sees things at much higher resolution and thus sees more fine detail.

Galaxies without end

Webb infrared image of galaxies without end
Click for original image.

Cool image time! The mid-infrared picture to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope during its commissioning process last year shortly after launch, and was used to calibrate the Near-InfraRed Imager and Slitless Spectrograph (NIRISS) instrument, the very same instrument that for the past two weeks was not in operation because a cosmic ray had scrambled its software, requiring a reboot to fix it. From the caption:

The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046648, it is situated a little over a billion light-years from Earth, in the constellation Hercules.

While the large spiral is majestic, the tiny galaxy smudges are actually more important. Astronomers are right now scrambling to determine their distance and age in order to better understand what the universe was like, thirteen-plus billion years ago. So far the Webb data of these very early galaxies suggests that in this early universe there were many more fully formed galaxies, similar to ones we see in our time, than any theory of the Big Bang had predicted.

Webb instrument back in operation

Engineers have returned NIRISS, the near infrared spectrograph instrument on the Webb Space Telescope, to full operation after rebooting its software and determining the cause of the problem.

On Jan. 15, NASA’s James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (NIRISS) experienced a communications delay within the science instrument, causing its flight software to time out. Following a full investigation by NASA and Canadian Space Agency (CSA) teams, the cause was determined to likely be a galactic cosmic ray, a form of high-energy radiation from outside our solar system that can sometimes disrupt electrical systems. Encountering cosmic rays is a normal and expected part of operating any spacecraft. This cosmic ray event affected logic in the solid-state circuitry of NIRISS electronics known as the Field Programmable Gate Array. Webb engineers determined that rebooting the instrument would bring it back to full functionality.

After completing the reboot, NIRISS telemetry data demonstrated normal timing, and to fully confirm, the team scheduled a test observation. On Jan. 28, the Webb team sent commands to the instrument to perform the observation, and the results confirmed on Jan. 30 NIRISS is back to full scientific operations.

Engineers actually have a name for such cosmic ray incidents that effect software. They call it a bitflip.

Communications issue shuts down one of Webb’s instruments

The near infrared instrument on the Webb Space Telescope, NIRISS, has been unavailable for science observations for more than a week due to a communications issue.

On Sunday, Jan. 15, the James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (NIRISS) experienced a communications delay within the instrument, causing its flight software to time out. The instrument is currently unavailable for science observations while NASA and the Canadian Space Agency (CSA) work together to determine and correct the root cause of the delay.

According to the update, the instrument’s hardware, as well as the rest of the telescope, has been unaffected and remains in good condition.

In November the telescope’s mid-infrared instrument MIRI experienced its own problems with one of its “grating wheels” that allows it to some spectroscopy. Since then the instrument has been in use, but it is unclear if the issue was resolved or observations have had to be adjusted to avoid the problem.

First exoplanet confirmed by Webb

Astronomers have used for the first time the Webb Space Telescope to confirm the existence of an exoplanet, previous noted in data from the orbiting TESS telescope.

Formally classified as LHS 475 b, the planet is almost exactly the same size as our own, clocking in at 99% of Earth’s diameter. The research team is led by Kevin Stevenson and Jacob Lustig-Yaeger, both of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

The team chose to observe this target with Webb after carefully reviewing targets of interest from NASA’s Transiting Exoplanet Survey Satellite (TESS), which hinted at the planet’s existence. Webb’s Near-Infrared Spectrograph (NIRSpec) captured the planet easily and clearly with only two transit observations.

The data is still preliminary, so more analysis is necessary to provide some information about the planet’s atmosphere.

Webb finds “wide diversity of galaxies in the early universe”

Webb galaxies in the early universe
Click for full image.

New data from the Webb Space Telescope and presented this week at an astronomy conference has found that galaxies in the early universe exhibit much of the same range of shapes and morphologies seen in the recent universe, a result that was not expected.

The image to the right comes from the press release. You can read the research paper here [pdf].

The study examined 850 galaxies at redshifts of z three through nine, or as they were roughly 11-13 billion years ago. Associate Professor Jeyhan Kartaltepe from Rochester Institute of Technology’s School of Physics and Astronomy said that JWST’s ability to see faint high redshift galaxies in sharper detail than Hubble allowed the team of researchers to resolve more features and see a wide mix of galaxies, including many with mature features such as disks and spheroidal components.

“There have been previous studies emphasizing that we see a lot of galaxies with disks at high redshift, which is true, but in this study we also see a lot of galaxies with other structures, such as spheroids and irregular shapes, as we do at lower redshifts,” said Kartaltepe, lead author on the paper and CEERS co-investigator. “This means that even at these high redshifts, galaxies were already fairly evolved and had a wide range of structures.”

The results of the study, which have been posted to ArXiv and accepted for publication in The Astrophysical Journal, demonstrate JWST’s advances in depth, resolution, and wavelength coverage compared to Hubble. Out of the 850 galaxies used in the study that were previously identified by Hubble, 488 were reclassified with different morphologies after being shown in more detail with JWST. Kartaltepe said scientists are just beginning to reap the benefits of JWST’s impressive capabilities and are excited by what forthcoming data will reveal.

“This tells us that we don’t yet know when the earliest galaxy structures formed,” said Kartaltepe. “We’re not yet seeing the very first galaxies with disks. We’ll have to examine a lot more galaxies at even higher redshifts to really quantify at what point in time features like disks were able to form.”

In other words, it appears galaxies of all shapes, as we see them today, already existed 11-13 billion years ago, shortly after the universe was born. This defies most theories about the formation of the universe, which predict that these early galaxies would be different than today’s.

The data however at this point is sparse. Webb has only begun this work, and as Kartaltepe notes, they need to look a lot more galaxies.

1 2 3 4 5 6