Curiosity science team to attempt first drilling in a year
After a year of tests and engineering rethinking, the Curiosity science team has decided to attempt drilling its first hole in more than a year.
From yesterday’s Curiosity mission update:
Because there is only so much data volume and rover power to go around, performing drill activities must temporarily come at the expense of scientific investigations (although you’d be pressed to find a disappointed science team member this week, as the drilling campaign will bring loads of new scientific data!). As a result, with the exception of some environmental observations by the Rover Environmental Monitoring Station (REMS) instrument, today’s plan does not have any targeted scientific observations within it. Today will instead be dedicated to drill preload activities and imaging for engineering and rover planning purposes in preparation for a full test of the revised drilling operations.
The problem with the drill has been its feed mechanism, the equipment that moves the drill downward into the hole. As designed the robot arm would get planted on the surface to provide stability for the drill, which as it drilled would be pushed downward that that feed mechanism. Last year they found something had clogged that mechanism so that it would not retract properly.
From what I understand, what they have tested and have decided to try instead is to place the drill against the surface in an extended position, and use the arm itself to push the bit downward. The concern is whether the arm can hold the drill steady. They have done some tests and think it can. We shall soon find out.
On Christmas Eve 1968 three Americans became the first humans to visit another world. What they did to celebrate was unexpected and profound, and will be remembered throughout all human history. Genesis: the Story of Apollo 8, Robert Zimmerman's classic history of humanity's first journey to another world, tells that story, and it is now available as both an ebook and an audiobook, both with a foreword by Valerie Anders and a new introduction by Robert Zimmerman.
The print edition can be purchased at Amazon. from any other book seller, or direct from my ebook publisher, ebookit.
The ebook is available everywhere for $5.99 (before discount) at amazon, or direct from my ebook publisher, ebookit. If you buy it from ebookit you don't support the big tech companies and the author gets a bigger cut much sooner.
The audiobook is also available at all these vendors, and is also free with a 30-day trial membership to Audible.
"Not simply about one mission, [Genesis] is also the history of America's quest for the moon... Zimmerman has done a masterful job of tying disparate events together into a solid account of one of America's greatest human triumphs."--San Antonio Express-News
After a year of tests and engineering rethinking, the Curiosity science team has decided to attempt drilling its first hole in more than a year.
From yesterday’s Curiosity mission update:
Because there is only so much data volume and rover power to go around, performing drill activities must temporarily come at the expense of scientific investigations (although you’d be pressed to find a disappointed science team member this week, as the drilling campaign will bring loads of new scientific data!). As a result, with the exception of some environmental observations by the Rover Environmental Monitoring Station (REMS) instrument, today’s plan does not have any targeted scientific observations within it. Today will instead be dedicated to drill preload activities and imaging for engineering and rover planning purposes in preparation for a full test of the revised drilling operations.
The problem with the drill has been its feed mechanism, the equipment that moves the drill downward into the hole. As designed the robot arm would get planted on the surface to provide stability for the drill, which as it drilled would be pushed downward that that feed mechanism. Last year they found something had clogged that mechanism so that it would not retract properly.
From what I understand, what they have tested and have decided to try instead is to place the drill against the surface in an extended position, and use the arm itself to push the bit downward. The concern is whether the arm can hold the drill steady. They have done some tests and think it can. We shall soon find out.
On Christmas Eve 1968 three Americans became the first humans to visit another world. What they did to celebrate was unexpected and profound, and will be remembered throughout all human history. Genesis: the Story of Apollo 8, Robert Zimmerman's classic history of humanity's first journey to another world, tells that story, and it is now available as both an ebook and an audiobook, both with a foreword by Valerie Anders and a new introduction by Robert Zimmerman.
The print edition can be purchased at Amazon. from any other book seller, or direct from my ebook publisher, ebookit. The ebook is available everywhere for $5.99 (before discount) at amazon, or direct from my ebook publisher, ebookit. If you buy it from ebookit you don't support the big tech companies and the author gets a bigger cut much sooner.
The audiobook is also available at all these vendors, and is also free with a 30-day trial membership to Audible.
"Not simply about one mission, [Genesis] is also the history of America's quest for the moon... Zimmerman has done a masterful job of tying disparate events together into a solid account of one of America's greatest human triumphs."--San Antonio Express-News
Here’s a KISSCaltech presentation about the ongoing engineering of a deep Mars drill, proposed to launch in 2029 on a third Curiosity rover clone. It would be a drill probe with instruments and all hanging in a tether.
Handling the cuttings seems to be the biggest challenge. But Mars’ near vacuum atmosphere makes it efficient to use pressurized gas to blow it up from a hole. To avoid getting the drill stuck in Mars’ frozen underground, the drill needs to be heated (I don’t know if it’s water or CO2 ice that glues the material together). It still requires surprisingly little energy to reach tens of meters depth. Sounds good for ISRU and infrastructure construction. Just drill holes and fill them with explosives to expose an underground glacier for example.