Scientists propose much more efficient method for warming Mars to habitable temperatures

Global map of known exposed scarps of ice on Mars. North and south of the
white hatched lines, near surface ice and glaciers are common.
Scientists have now proposed much more efficient method for warming the climate of the planet Mars by as much 50 degrees Fahrenheit, enough to melt much of the near-surface ice in the middle latitudes and thus make the planet habitable.
This new method, using engineered dust particles released to the atmosphere, could potentially warm the Red Planet by more than 50 degrees Fahrenheit, to temperatures suitable for microbial life—a crucial first step towards making Mars habitable.
The proposed method is over 5,000 times more efficient than previous schemes to globally warm Mars, representing a significant leap forward in our ability to modify the Martian environment. What sets this approach apart is its use of resources readily available on Mars, making it far more feasible than earlier proposals that relied on importing materials from Earth or mining rare Martian resources.
You can read the paper here. From the abstract:
» Read more

Global map of known exposed scarps of ice on Mars. North and south of the
white hatched lines, near surface ice and glaciers are common.
Scientists have now proposed much more efficient method for warming the climate of the planet Mars by as much 50 degrees Fahrenheit, enough to melt much of the near-surface ice in the middle latitudes and thus make the planet habitable.
This new method, using engineered dust particles released to the atmosphere, could potentially warm the Red Planet by more than 50 degrees Fahrenheit, to temperatures suitable for microbial life—a crucial first step towards making Mars habitable.
The proposed method is over 5,000 times more efficient than previous schemes to globally warm Mars, representing a significant leap forward in our ability to modify the Martian environment. What sets this approach apart is its use of resources readily available on Mars, making it far more feasible than earlier proposals that relied on importing materials from Earth or mining rare Martian resources.
You can read the paper here. From the abstract:
» Read more










