Astronomers find habitable Earth-mass planet 11 light years away

Worlds without end: Astronomers have found an Earth-mass planet 11 light years away, orbiting a quiet red dwarf star in the habitable zone.

Unlike Proxima Centauri, which periodically has large flares which make its Earth-sized planet less hospitable to life, this red dwarf, Ross 128, is more stable.

Many red dwarf stars, including Proxima Centauri, are subject to flares that occasionally bathe their orbiting planets in deadly ultraviolet and X-ray radiation. However, it seems that Ross 128 is a much quieter star, and so its planets may be the closest known comfortable abode for possible life.

Although it is currently 11 light-years from Earth, Ross 128 is moving towards us and is expected to become our nearest stellar neighbour in just 79 000 years — a blink of the eye in cosmic terms. Ross 128 b will by then take the crown from Proxima b and become the closest exoplanet to Earth!

Astronomers find Kuiper Belt-like ring around Proxima Centauri

Worlds without end: Astronomers have found a dusty ring 1 to 4 astronomical units from the nearest star, Proxima Centauri.

Because Proxima Centauri is a smaller, dimmer star, its system is more compact. Proxima b [the star’s known exoplanet] circles the star at 0.05 astronomical units (a.u., the average distance between Earth and the Sun) — for reference, Mercury orbits the Sun at 0.39 a.u. The dusty ring lies well beyond that, extending from 1 to 4 a.u.

The Proxima ring is similar in some ways to the Kuiper Belt, a cold, dusty belt in the far reaches of our solar system (beyond 40 a.u.) that contains a fraction of Earth’s mass. While the Kuiper belt is well known for larger members such as Pluto and Eris, it also contains fine grains, ground down through collisions over billions of years. The dust ALMA observed around Proxima Centauri is composed of similar small grains. The average temperature and total mass of the Proxima ring is also about the same as our Kuiper Belt.

Because the ring here much closer to the star than our Kuiper Belt, the material is much more densely packed. Moreover, the presence of both a ring and an exoplanet suggests more planets might remain undiscovered there, increasing the chances that this star could have a solar system very worthwhile exploring.

New exoplanet defies accepted theories of planet formation

The uncertainty of science: A newly discovered exoplanet, the size of Jupiter and orbiting a star half the size of the Sun, should not exist based on all the presently favored theories of planet formation.

New research, led by Dr Daniel Bayliss and Professor Peter Wheatley from the University of Warwick’s Astronomy and Astrophysics Group, has identified the unusual planet NGTS-1b – the largest planet compared to the size of its companion star ever discovered in the universe.

NGTS-1b is a gas giant six hundred light years away, the size of Jupiter, and orbits a small star with a radius and mass half that of our sun.

Its existence challenges theories of planet formation which state that a planet of this size could not be formed by such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. The planet is a hot Jupiter, at least as large as the Jupiter in our solar system, but with around 20% less mass. It is very close to its star – just 3% of the distance between Earth and the Sun – and orbits the star every 2.6 days, meaning a year on NGTS-1b lasts two and a half days.

No one should be surprised by this. While the present theories of planet formation are useful and necessary, giving scientists a rough framework for studying exoplanets, they should not be taken too seriously. We simply do not yet have enough information about how stars, solar systems, and planets form.

Astronomers find 20 more exoplanet candidates in Kepler archive

Worlds without end: Astronomers reviewing the Kepler archive have found 20 more exoplanet candidates, including one that has a mass about 97 percent of the Earth with an orbit 395 days long circling a star like the Sun.

The planet would be colder than Earth, as its star is slightly cooler than the Sun, and its orbit is slightly farther away. Nonetheless, this is an amazing twin, and would certainly be a prime target when interstellar travel becomes routine.

Astronomers search for water on Trappist-1 ecoplanets

The uncertainty of science: New research suggests that the Earth-sized exoplanets circling Trappist-1 might have water, or might not.

The data suggests the inner planets likely have lost all their water, but the outer planets, some of which are in the habitable zone, could have water. The key word is “could.” They actually don’t yet have any data that says for sure whether water is there..

Posted as we drive through Kayenta in the Navaho Reservation.

Have astronomers using Kepler discovered the first exomoon?

The uncertainty of science: Using data from Kepler astronomers think they have spotted the first exomoon, orbiting a star 4,000 light years away.

They think it might be the size of Neptune, and orbits a planet about ten times more massive than Jupiter.

All this is unconfirmed, however, especially because their conclusions are based on data from only three transits. They plan to use the Hubble Space Telescope to do more observations and hopefully confirm the discovery.

Update of Kepler exoplanet catalog

Worlds without end: The Kepler science team has released an update of the space telescope’s exoplanet candidate list, adding 219 new exoplanet candidates.

NASA’s Kepler space telescope team has released a mission catalog of planet candidates that introduces 219 new planet candidates, 10 of which are near-Earth size and orbiting in their star’s habitable zone, which is the range of distance from a star where liquid water could pool on the surface of a rocky planet. This is the most comprehensive and detailed catalog release of candidate exoplanets, which are planets outside our solar system, from Kepler’s first four years of data. It’s also the final catalog from the spacecraft’s view of the patch of sky in the Cygnus constellation.

With the release of this catalog, derived from data publicly available on the NASA Exoplanet Archive, there are now 4,034 planet candidates identified by Kepler. Of which, 2,335 have been verified as exoplanets. Of roughly 50 near-Earth size habitable zone candidates detected by Kepler, more than 30 have been verified.

Additionally, results using Kepler data suggest two distinct size groupings of small planets. Both results have significant implications for the search for life. The final Kepler catalog will serve as the foundation for more study to determine the prevalence and demographics of planets in the galaxy, while the discovery of the two distinct planetary populations shows that about half the planets we know of in the galaxy either have no surface, or lie beneath a deep, crushing atmosphere – an environment unlikely to host life.

Exoplanet hotter than some stars

Astronomers have identified an Jupiter-sized exoplanet with a surface that is apparently hotter than the surfaces of some stars.

With a day-side temperature of 4,600 Kelvin (more than 7,800 degrees Fahrenheit), planet KELT-9b is hotter than most stars, and only 1,200 Kelvin (about 2,000 degrees Fahrenheit) cooler than our own sun…. For instance, it’s a gas giant 2.8 times more massive than Jupiter but only half as dense, because the extreme radiation from its host star has caused its atmosphere to puff up like a balloon. And because it is tidally locked to its star—as the Moon is to Earth—the day side of the planet is perpetually bombarded by stellar radiation, and as a result is so hot that molecules such as water, carbon dioxide, and methane can’t form there. The properties of the night side are still mysterious—molecules may be able to form there, but probably only temporarily.

The most interesting aspect of this discovery is that it was done with small, inexpensive ground-based telescopes.

Astronomers find that Epsilon Eridani solar system resembles our own system

New data of the Epsilon Eridani solar system 10.5 light years away confirms that its debris disk has a structure somewhat resembling our own solar system.

The data has found that the debris disk has two narrow belts, one located at about the same distance from the star as our asteroid belt, and the other orbiting at about where Uranus is located. In addition, the system appears to have a Jupiter-sized planet orbiting the same distance from the star as does Jupiter.

Citizen scientists crowd scource discovery of 4 exoplanets

After being promoted on an Australian tv show an effort to use public help to plow through Kepler’s vast archives discovered four new exoplanets within two days.

In three days, the Australia iteration of astronomy TV show Stargazing Live brought us #SpaceGandalf and now its viewers have discovered four planets. After it was promoted on the show, citizen scientists and fans of the program came together to contribute to a crowd-sourcing project, stalking around 100,000 stars on the Zooniverse website, which displays recent data from the Kepler Space Telescope.

And you betcha, in just 48 hours, around 10,000 volunteers discovered scores of potential new planet candidates, with scientists confirming the discovery of four “super-Earth” planets orbiting a star in the constellation of Aquarius.

A solar system of exoEarths!

Astronomers have discovered a nearby solar system of exoplanets, all approximately Earth-sized with at least three in the habitable.

Following these initial findings, the star was systematically monitored to find out whether it contained any other planets. The result of this follow-up exceeded all expectations: TRAPPIST-1 has at least seven planets, all of which are Earth-sized (to within 15%). The six nearest planets (b to g) orbit their star in 1.5 to 12 days (the period of the seventh planet remains to be determined), and are 20 to 90 times closer to their star than the distance from the Earth to the Sun. At such distances, the tidal forces exerted by the star are considerable, locking the planets into synchronous rotation, which means that they rotate about their axis exactly once in one orbit, thus always showing the same face to their star (just as the Moon does relative to the Earth).

The planets of TRAPPIST-1 have insolations, and therefore average temperatures, similar to Earth’s: the insolation of the innermost planet (b) is slightly higher than that of Mercury, while the outermost planets (g and h) have an insolation that is a little lower than that of Mars. The insolations of at least three of the planets (e, f and g) are compatible with the existence of liquid water on their surface for a wide range of atmospheric compositions, as is shown by numerical simulations of their climate. Due to their synchronous rotation, it cannot be excluded that the planets with the highest irradiation (b, c and d) may harbor liquid water in temperate regions with little or no sunlight.

More here. The star, a cool dwarf, is only 40 light years away.

Posted in the Belize City airport, as we wait for our pickup.

The clouds of hot Jupiter exoplanets

Exoplanet clouds

Cool image time! The image on the right, reduced to show here, provides an overall summary of what astronomers know about the atmospheres of many gas giant exoplanets that also orbit very close to their suns and are tidally locked. The view is of the planet hemisphere facing away from the star, which is also where most of the clouds are thought to be. These results come from Kepler data combined with computer modeling, and show what scientists thinks happens with different cloud compositions at different temperatures.

Link fixed!

Scientists discover exoplanets orbiting both stars of binary system

Worlds without end: Scientists have discovered a stellar binary system which has giant exoplanets orbiting each of the system’s stars.

The twin stars studied by the group are called HD 133131A and HD 133131B. The former hosts two moderately eccentric planets, one of which is, at a minimum, about 1 and a half times Jupiter’s mass and the other of which is, at a minimum, just over half Jupiter’s mass. The latter hosts one moderately eccentric planet with a mass at least 2.5 times Jupiter’s.

The two stars themselves are separated by only 360 astronomical units (AU). One AU is the distance between the Earth and the Sun. This is extremely close for twin stars with detected planets orbiting the individual stars. The next-closest binary system that hosts planets is comprised of two stars that are about 1,000 AU apart.

More details about Proxima Centauri’s Earthlike exoplanet

Link here. Lots of background into the discovery itself, but I think these paragraphs really sum things up:

“The search for life starts now,” says Guillem Anglada-Escudé, an astronomer at Queen Mary University of London and leader of the team that made the discovery.

Humanity’s first chance to explore this nearby world may come from the recently announced Breakthrough Starshot initiative, which plans to build fleets of tiny laser-propelled interstellar probes in the coming decades. Travelling at 20% of the speed of light, they would take about 20 years to cover the 1.3 parsecs from Earth to Proxima Centauri.

Proxima’s planet is at least 1.3 times the mass of Earth. The planet orbits its red-dwarf star — much smaller and dimmer than the Sun — every 11.2 days. “If you tried to pick the type of planet you’d most want around the type of star you’d most want, it would be this,” says David Kipping, an astronomer at Columbia University in New York City. “It’s thrilling.”

The human race now has a real interstellar target to aim for. Don’t be surprised if we get there sooner than anyone predicts.

Astrobiologists meet to better their search for exoplanet life

The uncertainty of science: Astrobiologists are meeting this week in Seattle to discuss and refine their methods for detecting astrobiology on exoplanets.

The Seattle meeting aims to compile a working list of biosignature gases and their chemical properties. The information will feed into how astronomers analyse data from NASA’s James Webb Space Telescope, slated for launch in 2018. The telescope will be able to look at only a handful of habitable planets, but it will provide the first detailed glimpse of what gases surround which world, says Nikole Lewis, an astronomer at the Space Telescope Science Institute in Baltimore, Maryland.

No single gas is likely to be a slam-dunk indicator of alien life. But Domagal-Goldman hopes that the workshop will produce a framework for understanding where scientists could trip themselves up. “We don’t want to have a great press release,” he says, “and then a week later have egg on everybody’s faces.”

A few years ago I was told by one astronomer that the field’s biggest and most exciting area of research in the coming decades will be the effort to study the thousands exoplanets they only just discovered. I agree. The Webb telescope might have been built to study cosmology, but the data it will produce about exoplanets will be much more real and less uncertain, thus making it more compelling and convincing.

Nearby exoplanets have Earthlike atmospheres

Worlds without end: New data from Hubble suggests that two rocky exoplanets only 40 light years away have atmospheres more similar to Earth’s than to that of gas giants.

Specifically, they discovered that the exoplanets TRAPPIST-1b and TRAPPIST-1c, approximately 40 light-years away, are unlikely to have puffy, hydrogen-dominated atmospheres usually found on gaseous worlds. “The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.”

The actual make-up of these atmospheres remains unknown. Also, the central star, a red dwarf, is estimated to be about a half billion years old. Both the star’s make-up — red dwarfs are not as rich in elements as a G-type sun — and age do not provide much margin for the development of life.

Nonetheless, the new data increases again the likelihood that we will eventually find habitable worlds orbiting other stars, and we will find them in large numbers.

100 Kepler exoplanet candidates confirmed

Worlds without end: Astronomers have confirmed another 100 of Kepler’s more than 3,000 candidate exoplanets.

One of the most interesting set of planets discovered in this study is a system of four potentially rocky planets, between 20 and 50 percent larger than Earth, orbiting a star less than half the size and with less light output than the Sun. Their orbital periods range from five-and-a-half to 24 days, and two of them may experience radiation levels from their star comparable to those on Earth.

Despite their tight orbits—closer than Mercury’s orbit around the sun—the possibility that life could arise on a planet around such a star cannot be ruled out, according to Crossfield.

Because the host star of this as well as many of these other confirmed exoplanets are red dwarf stars, the possibility of life is reduced because the star and its system is likely to have a less rich mix of elements compared to our yellow G-type Sun.

A planet with three suns

Astronomers, using instruments on the Very Large Telescope in Chile, have discovered an exoplanet that orbits around three suns.

Located about 340 light years from Earth in the constellation Centaurus, HD 131399Ab is believed to be about 16 million years old, making it one of the youngest exoplanets discovered to date, and one of very few directly imaged planets. With a temperature of 850 Kelvin (about 1,070 degrees Fahrenheit or 580 degrees Celsius) and weighing in at an estimated four Jupiter masses, it is also one of the coldest and least massive directly imaged exoplanets.

“HD 131399Ab is one of the few exoplanets that have been directly imaged, and it’s the first one in such an interesting dynamical configuration,” said Daniel Apai, an assistant professor of Astronomy and Planetary Sciences who leads a research group dedicated to finding and observing exoplanets at the UA.

“For about half of the planet’s orbit, which lasts 550 Earth-years, three stars are visible in the sky, the fainter two always much closer together, and changing in apparent separation from the brightest star throughout the year,” said Kevin Wagner, a first-year PhD student in Apai’s research group and the paper’s first author, who discovered HD 131399Ab. “For much of the planet’s year the stars appear close together, giving it a familiar night-side and day-side with a unique triple-sunset and sunrise each day. As the planet orbits and the stars grow further apart each day, they reach a point where the setting of one coincides with the rising of the other – at which point the planet is in near-constant daytime for about one-quarter of its orbit, or roughly 140 Earth-years.”

The orbit of the planet remains somewhat uncertain, and thus it might not be stable.

Jupiter exoplanet around baby star

The uncertainty of science: Astronomers have discovered a Jupiter-class exoplanet orbiting a very young star, something their models of planetary formation told them shouldn’t happen.

“For decades, conventional wisdom held that large Jupiter-mass planets take a minimum of 10 million years to form,” said Christopher Johns-Krull, the lead author of a new study about the planet, CI Tau b, that will be published in The Astrophysical Journal. “That’s been called into question over the past decade, and many new ideas have been offered, but the bottom line is that we need to identify a number of newly formed planets around young stars if we hope to fully understand planet formation.”

CI Tau b is at least eight times larger than Jupiter and orbits a 2 million-year-old star about 450 light years from Earth in the constellation Taurus.

In other words, a planet that, according to the present models for planetary formation, supposedly needs 10 million years to form is orbiting a star only 2 million years old. In other words, the models are wrong. We simply don’t know enough yet about planetary formation to create any reliable models.

NASA uses computer model to find exoplanets

Garbage in, garbage out: Using statistical computer modeling only, NASA today announced that they are certain that almost a third of Kepler’s candidate exoplanets are really exoplanets.

Analysis was performed on the Kepler space telescope’s July 2015 planet candidate catalog, which identified 4,302 potential planets. For 1,284 of the candidates, the probability of being a planet is greater than 99 percent – the minimum required to earn the status of “planet.” An additional 1,327 candidates are more likely than not to be actual planets, but they do not meet the 99 percent threshold and will require additional study. The remaining 707 are more likely to be some other astrophysical phenomena. This analysis also validated 984 candidates previously verified by other techniques.

This is actually a stupid announcement. They haven’t learned a damn thing from this statistical analysis, but are merely saying that because Kepler found a lot of candidates, a lot of those candidates must be real planets. Worse, NASA is also implying here that confirming some of these candidate exoplanets by hard observations is now really unnecessary, since they can do it statistically.

This smacks of the corruption that has ruined much of climate research, allowing a computer model to replace actual observations. Big mistake. But I also suspect this announcement occurred for the same reasons: NASA wishes to justify its work and its funding, and thus decided to make a big deal about this very minor statistical analysis in order to puff up the discoveries of Kepler, even though there is no reason to do so.

I expect a lot of mainstream news organizations to write big puff pieces extolling this announcement in the coming days, which will once again prove that almost no one in journalism today has the slightest ability to apply their own independent analysis to the press releases they receive.

Mercury’s transit today

Here are a few links on today’s transit of the Sun by Mercury, which is going on right now.

I could give more, but this event is hardly as important as many new media are saying. It is interesting, and rare, and important in that it helps scientists get a better understanding of the uncertainties in their exoplanet research, but hardly important scientifically.

Consider this however: Mercury’s real orbit has it circle the sun every 88 days. If we could only detect it by the transits seen from Earth, we would only see it cross the Sun in 2006, 2016, 2019, and 2032. Figuring out its real orbit from that data would likely be impossible. Now, I realize that these seemingly random transits are partly determined by the Earth’s own orbit around the Sun, but they still illustrate that our use of transits to detect and characterize exoplanets has its limits. And in science one must always be aware of one’s limits.

Exoplanets found nearby

Worlds without end: Astronomers have identified three planets close to the habitable zone on a star only 39 light years away.

A year on the two inner planets lasts just a couple of days. Data on the third world are sparse; it could take anywhere between 4.5 and 72.8 days to trek around its sun. The star, designated 2MASS J23062928−0502285, is roughly the size of Jupiter — about one-tenth as wide as our sun — and about 3,200 degrees Celsius cooler than the sun. Such runts make up about 15 percent of the stars in the galaxy, though astronomers had not found planets around one before. All three planets were discovered as periodic dips in starlight in late 2015 using TRAPPIST, a telescope at La Silla Observatory in Chile.

If anything does crawl or grow on these worlds, it bathes in mostly infrared light. The innermost planets receive several times as much energy from their star as Earth does from our sun, which technically puts them outside the star’s habitable zone (SN: 4/30/16, p. 36). But the planets are huddled up so close to the star that gravity might keep them from spinning, creating a temperate zone along the line where day turns to night, the researchers suggest.

Exoplanet with cometlike orbit

Worlds without end: Astronomers detect an exoplanet with an orbit so eccentric that the orbit is more like a comet’s.

The eccentricity of a planet’s orbit is measured on a scale of 0 to 1, with 0 representing a perfectly circular orbit, and figures closer to one indicative of increasingly elliptical orbits. Earth’s orbital eccentricity, for example, is 0.017, and the most eccentric planet in our solar system – Mercury, assuming that we no longer class Pluto a planet – has an eccentricity of 0.205.

Our new friend, HD 20782, on the other hand, has an orbital eccentricity of 0.96, meaning its ellipse as it travels to and from its star is almost flat; and when it does finally return to its sun, after a 597-day orbital journey, it careers furiously round the star to slingshot back into space. “It’s around the mass of Jupiter, but it’s swinging around its star like it’s a comet,” said Dr. Kane.

Honing the search for alien civilizations

Worlds without end: In order to increase the odds of contacting extraterrestrial civilizations, astronomers have calculated the area in the sky where an alien-built Kepler could have seen the Earth transit the sun, thus increasing the chances that those alien-astronomers have discovered Earth and have tried to contact us.

“The key point of this strategy is that it confines the search area to a very small part of the sky. As a consequence, it might take us less than a human life span to find out whether or not there are extraterrestrial astronomers who have found the Earth. They may have detected Earth’s biogenic atmosphere and started to contact whoever is home,” explains René Heller from the MPS.

Not every star is equally well suited as a home of extraterrestrial life. The more massive a star, the shorter is its life span. Yet, a long stellar life is considered a prerequisite for the development of higher life forms. Therefore the researchers compiled a list of stars that are not only in the advantageous part of the sky but also offer good chances of hosting evolved forms of life, that is, intelligent life. The researchers compiled a list of 82 nearby Sun-like stars that satisfy their criteria. This catalogue can now serve as an immediate target list for SETI initiatives.

Hubble measures the rotation of an exoplanet

Worlds without end: Using the Hubble Space Telescope astronomers have measured the daily rotation of a super Jupiter exoplanet 170 light years away.

They estimate, based upon brightness variations attributed to clouds in the upper atmosphere, that the rotation rate is about 10 hours long. We should all recognize however the significant uncertainty of this number. Clouds change, as do weather conditions. The data only gives us a hint at what is going on here.

Astronomers make first analysis of a SuperEarth’s atmosphere.

Worlds without end: Using the Hubble Space Telescopes astronomers have made the first chemical analysis of a SuperEarth’s atmosphere.

The planet, 55 Cancri e, is estimated to have a mass of eight Earths. Its atmosphere was found to have hydrogen, helium, and the molecule hydrogen cyanide. No water was detected.

Astronomers have used Hubble to detect the components of a number of exoplanets, but these have all been giant planets more like Jupiter. This is the first measurement of an exoplanet whose mass is small enough that it might be rocky, like Earth.

More data says no alien civilization at KIC 8462852

New observations of the star KIC 8462852 to see if an alien civilization had produced laser signals has produced a null result, reinforcing the conclusion that the erratic dimming of the star is not caused by alien megastructures.

On six nights between October 29 and November 28, 2015, scientists searched for pulses as short as a billionth of a second at the Boquete Optical SETI Observatory in Panama, using a 0.5 m Newtonian telescope. The observatory’s relatively small telescope uses a unique detection method having enhanced sensitivity to pulsed signals. If any hypothetical extraterrestrials had beamed intentional laser pulses in the visible spectrum toward Earth, the Boquete observatory could have detected them so long as they exceeded the observatory’s minimum detectable limit.

KIC 8462852 has puzzled astronomers because it shows irregular dimming unlike anything seen for another star. The anomalous light curve was measured using NASA’s Kepler telescope, as part of its search for exoplanets. However, even though a planet the size of Jupiter would cause dimming of approximately 1%, the dimming observed for KIC 8462852 was far greater – up to 22%. Just as strange, the dimming didn’t follow the regular pattern of a planet orbiting a star, but instead was unpredictable. The best explanation to date is that the dimming may have been caused by cometary fragments in a highly elliptical orbit around KIC 8462852, intercepting starlight at the same time the Kepler mission was observing it.

More than half Kepler planet candidates false positives

The uncertainty of science: In attempting to confirm the giant exoplanet candidates in the Kepler telescope database a team of scientists has found that more than half are not planets at all but false positives.

An international team1 led by Alexandre Santerne from Instituto de Astrofísica e Ciências do Espaço (IA), made a 5-year radial velocity campaign of Kepler’s giant exoplanet candidates, using the SOPHIE spectrograph (Observatory of Haute-Provence, France), and found that 52,3% were actually eclipsing binaries, while 2,3% were brown dwarfs. Santerne (IA & University of Porto), first author of this paper commented: “It was thought that the reliability of the Kepler exoplanets detection was very good – between 10 and 20% of them were not planets. Our extensive spectroscopic survey, of the largest exoplanets discovered by Kepler, shows that this percentage is much higher, even above 50%.

The news article above is unclear about the number of candidates total this study actually looked at and pinned down. It appears they began looking at the full database of almost 9,000 candidates, but then narrowed it to 125. Were 50% of the 9,000 false positives, or of the 125? The article is unclear.

At first glance, this study appears to tell us that there might be fewer giant Jupiter-sized exoplanets out there than previously thought. Then again, the data is uncertain enough that this conclusion could easily be wrong. The real take-away is that the science of exoplanets has only just begun, and that sweeping generalizations about the nature of solar systems in the galaxy are exceedingly unreliable. We simply don’t know enough yet.

1 2 3 4 5 6 9