A new dark matter detector has failed to detect any dark matter after its first three months of operation.
The uncertainty of science: A new dark matter detector has failed to detect any dark matter after its first three months of operation.
Buried about a mile underground in a repurposed South Dakota gold mine, the LUX experiment searches for signs of dark matter particles colliding with the atoms in a vat of liquid xenon. During its first three months of operation, the detector found no such signals whatsoever. “We looked hard for these dark matter particles and we didn’t see anything,” says physicist Rick Gaitskell of Brown University, co-spokesperson for the LUX experiment. The results, presented at a seminar today and submitted to Physical Review Letters for publication, rule out a number of possible masses and characteristics for the particles that make up dark matter. The null result also conflicts with earlier experiments that had reported possible signals of dark matter.
This experiment has not proven that dark matter does not exist. It merely has narrowed significantly the kinds of particles that dark matter could be made of. That the results also contradict evidence from other detectors, however, leaves this specific area of science particularly uncertain.
The uncertainty of science: A new dark matter detector has failed to detect any dark matter after its first three months of operation.
Buried about a mile underground in a repurposed South Dakota gold mine, the LUX experiment searches for signs of dark matter particles colliding with the atoms in a vat of liquid xenon. During its first three months of operation, the detector found no such signals whatsoever. “We looked hard for these dark matter particles and we didn’t see anything,” says physicist Rick Gaitskell of Brown University, co-spokesperson for the LUX experiment. The results, presented at a seminar today and submitted to Physical Review Letters for publication, rule out a number of possible masses and characteristics for the particles that make up dark matter. The null result also conflicts with earlier experiments that had reported possible signals of dark matter.
This experiment has not proven that dark matter does not exist. It merely has narrowed significantly the kinds of particles that dark matter could be made of. That the results also contradict evidence from other detectors, however, leaves this specific area of science particularly uncertain.