China: Chang’e-6 collected more than four pounds of material from Moon

According to China’s state-run press today, its Chang’e-6 sample return mission collected 1,953.2 grams, more than four pounds, from the Aitkin Basin on the far side of the Moon.

Based on preliminary measurement, the Chang’e-6 mission collected 1,935.3 grams of lunar samples, according to the CNSA. “We have found that the samples brought back by Chang’e-6 were more viscous compared to previous samples, with the presence of clumps. These are observable characteristics,” Ge Ping, deputy director of the CNSA’s Lunar Exploration and Space Engineering Center, who is also the spokesperson for the Chang’e-6 mission, told the press at the ceremony.

Researchers will then carry out the storage and processing of the lunar samples as planned and initiate scientific research work.

If all goes as plans, they will be ready to begin distributing samples for study to Chinese researchers in about six months.

Juno infrared data confirms existence of at least eleven lava lakes on Io

Cartoon describing Io's lava lakes
Click for original image.

Using infrared data from the Jupiter orbiter Juno, obtained during a close fly-by in May 2023 of the moon Io, scientists have identified what appear to be at least eleven active lava lakes, all filled with liquid magma under a surface crust and having a stable perimeter that apparently does not overflow the rim.

You can read the research paper here. The graphic to the right is figure 6 from the paper, describing two models for explaining why the lava in these lakes never rises high enough to pour out.

Unlike the April fly-by, which got as close as 10,777 miles and produced some amazing imagery, the May fly-by only got within 22,000 miles, but its course allowed Juno’s infrared instruments to collect good global data for six hours.

The JIRAM data reveal a common set of thermal characteristics for at least ten patera, with bright “thermal rings” around the perimeter of their floors. Loki, Surt, Fuchi, Amaterasu, Mulungu, Chors, and Dazhbog paterae, two unnamed paterae (here referred to as UP1 and UP2), and two other potential additional paterae (not discussed further because the spatial resolution is poor), all show the same pattern of surface temperatures.

That data suggested that each patera was a hot lava lake, with a stable rim in which little magma ever overflowed. As the scientists conclude in their paper, “Present findings highlight Io’s abundant lava reserves, resembling lava lakes on Earth in some ways, yet distinctly different from any other phenomena observed in the Solar System.” The scientists also note that no missions are being planned right now to get a better look at Io.

Engineers revive instrument on Perseverance

Engineers in the Perseverance science team have successfully gotten a stuck cover moved so that it no longer blocked a camera and spectroscopic instrument mounted on the rover’s robot arm from gathering data.

The cover had gotten stuck partially closed in January 2024.

Analysis by the SHERLOC team pointed to the malfunction of a small motor responsible for moving the protective lens cover as well as adjusting focus for the spectrometer and the Autofocus and Context Imager (ACI) camera. By testing potential solutions on a duplicate SHERLOC instrument at JPL, the team began a long, meticulous evaluation process to see if, and how, the lens cover could be moved into the open position.

Among many other steps taken, the team tried heating the lens cover’s small motor, commanding the rover’s robotic arm to rotate the SHERLOC instrument under different orientations with supporting Mastcam-Z imagery, rocking the mechanism back and forth to loosen any debris potentially jamming the lens cover, and even engaging the rover’s percussive drill to try jostling it loose. On March 3, imagery returned from Perseverance showed that the ACI cover had opened more than 180 degrees, clearing the imager’s field of view and enabling the ACI to be placed near its target.

Because the cover could no longer be moved, focusing was no longer possible. They then had to use the robot arm to do a long sequence of careful focus tests to determine the best distance for sharp imagery, which was found to be about 1.58 inches.

As is usual for all Perseverance press releases from NASA, this one starts out with the lie that the purpose of this instrument is to “look for potential signs of ancient microbial life.” That is false. While finding such things would be possible with SHERLOC, its real purpose is to study close-up the geology of Mars. To claim its purpose is to look for microbial life is sheer blarney.

Chang’e-6 sample return capsule opened in China

According to China’s state-run press, the return capsule carrying samples from the far side of the Moon was opened yesterday “during a ceremony at the China Academy of Space Technology under the China Aerospace Science and Technology Corporation in Beijing.”

No other details were released. The pictures at the link appear to show engineers removing an internal capsule from inside the return capsule, which makes sense. For many scientific reasons the actual samples must be kept sealed from the Earth’s atmosphere in order to make sure they are not contaminated. The actual lunar material will not be exposed and touched until it is placed inside a very controlled environment.

An island of hundreds of scour pits in Mars’ largest volcanic ash field

An island of scour pits
Click for original image.

Cool image time! The picture to the left, cropped, reduced, and sharpened to post here, was taken on April 25, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

It shows what the science team labels a “scour pit island,” an area about 13 miles long and 3.5 miles wide where the ground is covered by these pits.

Your eye may play tricks on you, reversing the elevations. These are all pits, with most having a central peak or ridgeline. To help, note that the sunlight is coming from the west. The arrow on the center left of the picture sits on a plateau above these pits.

According to this paper [pdf], the pits are slowly dug out by the wind coming from the southeast blowing to the northwest, as indicated by the arrows. The central peaks or ridges are thought to be a hint of the original topography, with the wind only able to pull ash from the terrain around these peaks.
» Read more

More garbage science about wildfires and global warming from Nature

Nature: the science journal that no longer does real science
The science journal which no longer
understands how real science is done

The once highly respected science journal Nature continues its descent into propaganda and bad science, all because it bows unskeptically before the altar of global warming and leftist science fantasies.

Today’s example is an article this week entitled “You’re not imagining it: extreme wildfires are now more common,” describing a new Nature paper that attempted to use satellite data to prove that the intensity of wildfires has increased in the past two decades.

For the current study, published in Nature Ecology and Evolution on 24 June, Cunningham and his colleagues scoured global satellite data for fire activity. They used infrared records to measure the energy intensity of nearly 31 million daily fire events over two decades, focusing on the most extreme ones — roughly 2,900 events. The researchers calculated that there was a 2.2-fold increase in the frequency of extreme events globally in 2003–23, and a 2.3-fold boost in the average intensity of the top 20 most intense fires each year.

We’re all gonna die! As is usual for these crap climate-related studies, the entire goal is to drum up some manufactured new crisis that justifies the claim that the climate is warming. This study is no different, as the article eagerly notes:

Although the study doesn’t directly connect the fire trend to global warming, Cunningham [the study’s lead author] says “there’s almost certainly a significant signal of climate change”. Research has shown that rising temperatures are drying out ecosystems — such as coniferous forests — that are naturally prone to fire. This provides fuel that can boost the fires’ size and longevity. The latest study also found that the energy intensity of the fires increased faster during the night-time over the past two decades than during the daytime, which aligns with evidence4 that rising night-time temperatures are contributing to fire risk.

Not surprisingly, the New York Times immediately jumped on the bandwagon with its own article that accepts the conclusions of this research with utter naivety.

What junk. First, Cunningham fails to note this minor fact mentioned in the abstract of his own paper:
» Read more

Scientists surprised by new Webb data of the upper layers of Jupiter’s Great Red Spot

Jupiter's Great Red Spot, as seen in infrared
Click for original image.

The uncertainty of science: Using the Webb Space Telescope, scientists have obtained infrared data of the upper layers of Jupiter’s Great Red Spot, revealing that it is far more complicated that predicted by researchers.

The upper atmosphere of Jupiter is the interface between the planet’s magnetic field and the underlying atmosphere. Here, the bright and vibrant displays of northern and southern lights can be seen, which are fuelled by the volcanic material ejected from Jupiter’s moon Io. However, closer to the equator, the structure of the planet’s upper atmosphere is influenced by incoming sunlight. Because Jupiter receives only 4% of the sunlight that is received on Earth, astronomers predicted this region to be homogeneous in nature.

The Great Red Spot of Jupiter was observed by Webb’s Near-InfraRed Spectrograph (NIRSpec) in July 2022, using the instrument’s Integral Field Unit capabilities. The team’s Early Release Science observations sought to investigate if this region was in fact dull, and the region above the iconic Great Red Spot was targeted for Webb’s observations. The team was surprised to discover that the upper atmosphere hosts a variety of intricate structures, including dark arcs and bright spots, across the entire field of view.

You can read the published research paper here. The image to the right is figure 4 from that paper, with each panel showing different infrared wavelengths indicated by the different colors, and thus the complex structures and physical properties.

Chang’e-6 brings back the first lunar samples from Moon’s far side

Engineers inspecting and opening Chang'e-6 return capsule
Engineers inspecting and opening Chang’e-6’s
sample return capsule after landing today.
Click for original image.

According to China’s state-run press, the sample return capsule of its Chang’e-6 lunar mission successfully landed today in the inner Mongolia region of China, bringing back the first lunar samples from Moon’s far side.

Under ground control, the returner separated from the orbiter approximately 5,000 km above the South Atlantic. The capsule entered the Earth’s atmosphere at about 1:41 p.m. at an altitude of about 120 km and a speed of nearly 11.2 km per second. After aerodynamic deceleration, it skipped out of the atmosphere and then began to glide downwards, before re-entering the atmosphere and decelerating for a second time.
At around 10 km above the ground, a parachute opened, and the returner later landed precisely and smoothly in the predetermined area, where it was recovered by a search team.

The returner is set to be airlifted to Beijing for opening, and the lunar samples will be transferred to a team of scientists for subsequent storage, analysis and study, said the CNSA. [emphasis mine]

The highlighted sentence is important. China has now successfully flown this atmospheric skip maneuver twice on returning from the Moon. Though both missions were unmanned, the technical knowledge gained from these flights is critical for their plans to send astronauts to the Moon in the next few years.

I have embedded China’s broadcast of the landing below. The sample capsule will now be carefully opened and the samples distributed first to Chinese scientists and later to China’s various partners in its lunar base project. The samples themselves came from a small mare region on the edge of Apollo Crater inside South Aitken Basin, one of the largest impact basins on the Moon. It is thus hoped that the samples were excavated from deep within the Moon during the impact, and will provide new data on the Moon’s make-up and history.
» Read more

Are Chang’e-6’s lunar samples on the way back to Earth?

In Friday’s June 21, 2024 quick links, changes to lunar orbit of China’s Chang’e-6 sample return spacecraft were detected by ham operators. As I noted, “It isn’t clear whether this was the previous orbit adjustment, a new one, or the burn that would send the sample return capsule back to Earth.”

According to Space News today, the spacecraft with the samples is on its way back to Earth, based on additional information detected by amateurs. China however has released no information on the status of the spacecraft.

Upon return to Earth, the reentry capsule is expected to touch down at Siziwang Banner, Inner Mongolia during an half-an-hour long window opening at 1:41 a.m. Eastern (0541 UTC) June 25. The information is according to airspace closure notices. CNSA has not openly published timings of mission events in advance.

Earlier reports (which I can’t find now) had said the return was tentatively scheduled for June 25, 2024, so this Space News report makes sense. The lack of information from China is par for the course.

China launches gamma-ray space telescope

China today successfully launched the Space-based Multi-band Variable Object Monitor (SVOM) gamma-ray space telescope, a 20-year-long joint Chinese-French project to monitor astronomical gamma ray bursts.

SVOM was placed in orbit by a Long March 2C rocket lifting off from China’s Xichang spaceport in the southwest of China. No word on where the rocket’s lower stages — which use very toxic hypergolic fuels — crashed inside China. UPDATE: See this video from China. Apparently one stage landed close to homes, spewing that orange hypergolic fuel.

The leaders in the 2024 launch race:

64 SpaceX
28 China
8 Russia
8 Rocket Lab

American private enterprise still leads the world combined in successful launches, 75 to 42, while SpaceX by itself still leads the entire world, including other American companies, 64 to 53.

2,000-year-old wine found in Roman tomb

According to tests done on a liquid found in an urn in a Roman tomb discovered in Spain in 2019, that liquid is an ancient white wine that likely came from that region.

As part of that ritual, the skeletal remains of one of the men were immersed in a liquid inside a glass funerary urn. This liquid, which over time has acquired a reddish hue, has been preserved since the first century AD, and a team with the Department of Organic Chemistry at the University of Cordoba, led by Professor José Rafael Ruiz Arrebola, in collaboration with the City of Carmona, has identified it as the oldest wine ever discovered, thus topping the Speyer wine bottle discovered in 1867 and dated to the fourth century AD, preserved in the Historical Museum of Pfalz (Germany).

It is unclear from the report whether anyone has actually tasted the wine, which even if drinkable is tainted by the bones and the cremated ashes of that one individual.

Astronomers see a quiet galaxy become active for the first time

Using a number of space- and ground-based telescopes, astronomers have for the first time seen in real time what had previously been a very inactive and quiet galaxy become active and energetic, suggesting a major event at the galaxy’s center had taken place to change its behavior.

From the abstract of the paper [pdf]:

We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼ 10 6 M ⊙ AGN [a one million solar mass black hole] that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.

As noted in the press release:

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before.

If the central black hole is switching from being quiet to active, this galaxy is providing astronomers critical information for understanding such changes. This is particularly important to us here in the Milky Way, which has a very inactive central supermassive black hole weighing about 4 million solar masses. It would be very useful to understand what would cause it to become active, especially because such an event might even have an impact — possibly negative — throughout our entire galaxy.

Scientists release first image from Hubble in one-gyro mode

First Hubble image in one-gyro mode
Click for original image.

The Hubble science team today released the first image from the Hubble Space Telescope produced in its new one-gyro mode.

That image it so the right, cropped, reduced, and sharpened to post here, and shows NGC 1546, a nearby galaxy in the constellation Dorado about 52 million light years away. The inset shows at full resolution the small red galaxy near the top, to give some sense of the telescope’s capabilities in this one-gyro mode.

The details astonish me, and prove my pessimism about this new mode to have been wrong. I expected future images to be more fuzzy, with Hubble’s ability to take sharp images largely limited. The resolution here is excellent, and bodes well for future science observations.

Nonetheless, the telescope is still working under major limitations:

Although one-gyro mode is an excellent way to keep Hubble science operations going, it does have limitations, which include a small decrease in efficiency (roughly 12 percent) due to the added time required to slew and lock the telescope onto a science target.

As previously noted, prior to the use of the fine guidance sensors, fixed head star trackers position Hubble’s pointing closer to the target. If Earth or the moon block two of the fixed head star trackers’ fields of view, Hubble must move further along in its orbit until the star trackers can see the sky and its stars again. This process encroaches upon science observation time. Second, the additional time the fine guidance sensors take to further search for the guide stars adds to the total time the sensors use to complete the acquisition.

Third, in one-gyro mode Hubble has some restrictions on the science it can do. For example, Hubble cannot track moving objects that are closer to Earth than the orbit of Mars. Their motion is too fast to track without the full complement of gyros. Additionally, the reduced area of sky that Hubble can point to at any given time also reduces its flexibility to see transient events or targets of opportunity like an exploding star or an impact on Jupiter.

When combined, these factors may yield a decrease in productivity of roughly 20 to 25 percent from the typical observing program conducted in the past using all three gyros.

It really is time for the astronomical community to get its act together and begin work on developing and launching more large optical telescopes into space. Hubble has shown us the potential of in-space optical astronomy. That astronomers have not flocked in the last three decades to build more such telescopes is puzzling beyond belief.

Massive Martian landslides

Massive Martian landslides
For original images go here and here.

Overview map

Today’s two cool images above provide a nice sense of the massive nature of many Martian landslides. Scientists often call this kind of slide “mass wasting,” because rather than it occurring because a single rock propagates a larger flow of rocks as it starts rolling downhill, this slide occurs because a large section of the hillside suddenly breaks free and moves downward as a unit, carving a path as it goes.

Mars has a lot of these kinds of slides, likely caused partly by its lower gravity, 39% that of Earth’s.

The overview map to the right marks the location of both slides by their numbers. Number one took place on the eastern interior rim of a 56-mile-wide and 7,000-foot-deep unnamed crater the dry tropics of Mars. The slide dropped about 3,000 feet, beginning about halfway down from the top of the rim and not quite reaching the crater floor. The picture was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on March 31, 2024.

Number two occurred on the western interior rim of a 32-mile-wide and 6,500-foot-deep unnamed crater in the mid-latitudes where near-surface ice and glacial features are often found. In this case the slide fell downward about 3,500 feet. The picture was taken by MRO’s high resolution camera on March 14, 2024.

Despite the different latitudes and thus different climates and geological settings, both landslides look similar. It is possible they occurred under similar conditions, but at very different times. Or it is also possible that the Mars gravity and general environment promotes these mass wasting events everywhere.

Surprise! Scientists discover that eating cheese makes you happier in old age!

Science discovers the obvious: A computer analysis of 2.3 million people in Europe has found that eating cheese helped make them healthier and happier as they aged.

A mediation analysis identified 33 factors that mediate “between the well-being spectrum and the aging-GIP” – essentially, statistically, the disease, behaviors and lifestyle choices that significantly reduce the healthy aging score. Key ones included TV watching, smoking, medication use, heart failure, attention-deficit hyperactivity disorder (ADHD), stroke, coronary atherosclerosis and ischemic heart disease.

Cheese, on the other hand, swung the pendulum the other way in both its impact on the well-being spectrum and aging-GIP. One of five key lifestyle mediators the data testing identified, it had a 3.67% positive impact on those healthy aging factors (whereas, for example, higher fruit intake had a 1.96% positive result and too much TV time, an indication of a more sedentary lifestyle, had a 7.39% negative impact on the score for both indicators).

While interesting, this research is generally junk. The number of uncertainties and assumptions are so large that no one should take any of these positive and negative scores very seriously. Furthermore, the study basically discovers something that is patently obvious from the beginning: If you are active and eat well, you will be healthier in old age. If you are a couch potato who smokes, you will likely be sicker in old age.

Why cheese (and fruit) should improve these scores is intriguing, but simply suggests that the study is not very useful. The intriguing (and amusing) nature of these results guarantees however that it will blasted by every mainstream news source in the coming days, with little mention of the weakness of the research.

Once again, the first known binary of two supermassive black holes flares as predicted

The predicted orbit of OJ287

Using a variety of space telescopes astronomers have successfully predicted and then observed a major flare that occurred on November 12, 2021 from OJ287, the first known binary of two supermassive black holes located 3.5 billion light years away at the center of a very active galaxy dubbed a blazar.

On Nov. 12, 2021, TESS detected OJ 287 brightening by about two magnitudes for about 12 hours, as it released as much energy in that short burst as 100 average galaxies would release in the same time. This flare was attributed to a jet from the second black hole; observations from the other telescopes supported that result as well, with Fermi in particular detecting a significant outburst of gamma rays.

The figure to the right comes from the published paper [pdf], and shows the orbit of the smaller supermassive black hole — weighing 150 million solar masses — as it circled the larger central supermassive black hole — weighing 18 billion solar masses — from 2000 to 2021.

This was not the first time such a flare from OJ287 had been predicted and observed. Astronomers also did it in 2019. These observations now strongly confirm the predicted orbit of the small black hole, as shown in the figure.

The insane mountain slopes of Mars’ deep canyons

Overview map

The insane mountain slopes of Mars' deep canyons
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on April 25, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label this layered deposits, but that hardly describes what we are looking at. This slope, as shown in the overview map above, is the north flank of the central ridgeline inside the giant enclosed canyon depression dubbed Hebes Chasma, located just north of the main canyon of Valles Marineris, the largest known canyon in the solar system.

From floor to peak the ridge is around 16,000 feet high. Yet, its peak sits more than 6,000 feet below the plateau that surrounds Hebes. In this one picture the drop from high to low is only 5,700 feet, with thousands of feet of cliff unseen below and above.

Yet every single foot of these gigantic cliffs is layered. Based on close-up data obtained by Curiosity on the slopes of Mount Sharp in Gale Crater on the other side of the planet, the layers we can see here only represent the most coarse sedimentary boundaries. Within these layers are likely thousands upon thousands of thin additional layers, each likely representing some cyclical climate proces on Mars, even down to individual years.

Note too that the lower slopes in this picture (near the top) suggest some form of erosion flowing downhill. What caused that erosion process however remains unknown. It could have been liquid water, or glaciers, or some other process unique to Mars that we still haven’t uncovered.

Lunar Reconnaissance Orbiter snaps picture of Chang’e-6 on far side of the Moon

Chang'e-6's landing site
Click for original image of Chang’e-6 on the Moon

The science team running Lunar Reconnaissance Orbiter (LRO) have now released an image of China’s Chang’e-6 lander on far side of the Moon, taken on June 7, 2024 one week after the spacecraft touched down.

Chang’e 6 landed on 1 June, 2024, and when LRO passed over the landing site almost a week later, it acquired an image showing the Chang’e 6 lander on the rim of an eroded ~50 meter diameter crater.

The LROC team computed the landing site coordinates as 41.6385°S, 206.0148°E, at -5256 meters elevation relative to the average lunar surface, with an estimated horizontal accuracy of plus-or-minus 30 meters.

The overview map to the right, showing the entire far side of the Moon, shows that picture as the inset in the lower left, cropped to post here. The black and white dot in the center is Chang’e-6’s lander, with the surrounding brightened ground showing the blast area produced by the engines during touchdown.

According to the LRO press release, the large dark area that surrounds the lander — as seen in the wider inset in the upper right — is a “basaltic mare deposit” — similar to the vast dark frozen lava seas evident to our own eyes on the near side of the Moon.

Webb produces false color infrared image of the Crab Nebula

The Crab Nebula as in infrared by Webb
Click for original image.

The false-color infrared picture to the right, reduced and sharpened to post here, was taken by the Webb Space Telescope of the Crab Nebula, located 6,500 light years away and created when a star went supernova in 1054 AD, in order to better understand its make-up and origins. From the caption:

The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in green), warm dust (magenta), and synchrotron emission (blue). Yellow-white mottled filaments within the Crab’s interior represent areas where dust and doubly ionized sulfur coincide.

The spectroscopic data from this infrared observation has in fact increased the puzzle of the Crab’s origin. Previously the data suggested the supernova that caused it was one type of supernova. This data now suggests it could have been a different type, without precluding the possibility of the first.

“Now the Webb data widen the possible interpretations,” said Tea Temim, lead author of the study at Princeton University in New Jersey. “The composition of the gas no longer requires an electron-capture explosion, but could also be explained by a weak iron core-collapse supernova.”

You can read the published science paper here [pdf].

Archaeologists discover 35 glass jars at Mount Vernon from 1700s, most containing edible preserved fruits

During an on-going renovation at George Washington’s Mount Vernon home, archaeologists have discovered 35 glass jars from the 1700s, with most containing preserved cherries and berries that appear completely edible.

Of the 35 bottles, 29 are intact and contain perfectly preserved cherries and berries, likely gooseberries or currants. The contents of each bottle have been carefully extracted, are under refrigeration at Mount Vernon, and will undergo scientific analysis. The bottles are slowly drying in the Mount Vernon archaeology lab and will be sent off-site for conservation.

Only a small quantity of the preserved fruits has been analyzed, with the following results:

  • 54 cherry pits and 23 stems have been identified thus far, suggesting that the bottles were likely full of cherries before bottling. Cherry pulp is also present.
  • Microscopy suggests that the cherries may have been harvested by snipping from trees with shears. The stems were neatly cut and purposefully left attached to the fruit before bottling.
  • The cherries likely are of a tart variety, which has a more acidic composition that may have aided in preservation.
  • The cherries are likely candidates for DNA extraction, which could be compared against a database of heirloom varieties to determine the precise species.
  • The pits are undergoing an examination to determine if any are viable for germination.

The last point is most fascinating. Imagine if a new cherry tree could be grown from a pit that was likely picked when George Washington was alive.

Perseverance looks back at downstream Neretva Vallis

Perseverance looks backwards
Click for full resolution version. Highly recommended!

Cool image time! The panorama above was released today by the science team of the Mars rover Perseverance, created from 56 pictures taken by the rover’s high resolution camera. It looks east, downstream into Neretva Vallis, what is believed to be the ancient riverbed that produced the delta that now exists inside Jezero Crater.

The yellow lines in the overview map below indicate the approximate area shown by the panorama. The blue dot marks where Perseverance was located when it took these pictures on May 17, 2024.

Make sure you look at the full resolution image. Neretva Vallis, the depression in the center of the panorama, is about a quarter-mile wide. The green dot on the map marks Ingenuity’s final landing spot. Though the helicopter is somewhere inside that panorama, it does not appear to be visible as it lies on the far side of one of those dunes.

It is also possible that Ingenuity is visible, but is only a tiny dark dot that makes it hard to identify. In reviewing the high resolution image closely, there is one dot that could be Ingenuity.

Overview map
Click for interactive map.

Study: Dust removal at Jezero 9x greater than InSight landing area

Figure 2 from the paper
Figure 2 from the paper. Click for original.

Using data from the Mars rover Perseverance, scientists have concluded that dust removal rate in Jezero crater is almost ten times greater than where InSight landed in western Elysium Planitia.

The graph, figure 2 from their paper, illustrates that differents starkly. From their abstract:

Dust removal is almost 10 times larger than at InSight’s location: projections indicate that surfaces at Jezero will be periodically partially cleaned. The estimations of the effect of the accumulated dust as a function of time are encouraging for solar-powered missions to regions with similar amounts of dust lifting, which might be determined from orbital data on where dust storms originate, dust devils or their tracks are found, or seasonal albedo changes are noted.

In other words, it might be practical to send solar powered rovers to different places on Mars, if first research was done to see if the conditions there would regularly clear dust from those panels.

This research confirms what had been implied by the different experiences of landers/rovers in different places on Mars. InSight landed near the equator in a region south of the giant shield volcano Elysium Mons. It only survived four years, with steadily lower energy levels, because no wind or dust devil ever cleared the accumulating dust on its solar panels. Spirit meanwhile landed about 1,500 miles southwest of InSight, yet its power levels were still healthy after more than five years of operations, when those operations ended because the rover could no longer move. The rover Opportunity meanwhile on the other side of the planet lasted more than fourteen years. Both rovers relied on solar power, like InSight, but their solar panels kept getting cleared of dust by wind and dust devils.

It is unclear if this wind research has been done for Europe’s Franklin rover, presently scheduled to land in Oxia Planum in 2028. Franklin will rely on solar panels, and though its nominal mission on the surface is only supposed to last seven months, it is always assumed it will continue until the rover fails.

Perseverance looks up at the rim of Jezero Crater

Panorama on June 10, 2024 by Perseverance
Click for full resolution. For original images, go here, here, here, and here.

Overview map
Click for interactive map.

Cool image time. The panorama above was created from four pictures taken on June 10, 2024 by the left navigation camera on the Mars rover Perseverance (captions found here, here, here, and here). It looks north at the nearest hill that forms the north part of the rim of Jezero Crater.

The overview map to the right provides context. The blue dot marks Perseverance’s present location, when it took these pictures. The yellow lines indicate the approximate area covered by the panorama. The red dotted line marks the rover’s planned route, while the white dotted line the route it has actually taken.

Because the rover is now at the base of this hill, it can no longer see the top of the crater’s rim. What it sees instead is the barren foothills of that rim, covered with dust, dunes, and many broken rocks.

As I have noted numerous times, the utter lack of life marks this as a truly alien landscape, compared to Earth. Nowhere on our home planet would you see terrain this empty of life. While NASA likes to claim that Perseverance’s main mission is the search for life on Mars, that claim is always a lie. It is very unlikely any life is going to be found here by Perseverance, and if that was its true scientific purpose it would never have been built nor launched.

What the scientists are doing is studying the alien geology of Mars, to try to understand how this utterly alien planet got to be the way it is now. Such knowledge is critical for the future explorers of space, as it will make it easier for them to understand the alien landscapes they will find elsewhere, within the solar system and eventually in other solar systems far beyond.

Curiosity sees evidence of solar storm hitting Mars

Charged particles from solar storm
Click to see original three-frame movie.

Cool image time! The picture to the right is a screen capture from a three-frame movie created from photos taken by one of the navigation cameras on the Mars rover Curiosity. The white streak and other smaller streaks were created by charged particles hitting the camera’s CCD detector on May 20, 2024, from a solar storm caused by the strong solar flares presently being pumped out by the Sun.

The mission regularly captures videos to try and catch dust devils, or dust-bearing whirlwinds. While none were spotted in this particular sequence of images, engineers did see streaks and specks – visual artifacts created when charged particles from the Sun hit the camera’s image detector. The particles do not damage the detector.

The images in this sequence appear grainy because navigation-camera images are processed to highlight changes in the landscape from frame to frame. When there isn’t much change — in this case, the rover was parked — more noise appears in the image.

Curiosity’s Radiation Assessment Detector (RAD) measured a sharp increase in radiation at this time – the biggest radiation surge the mission has seen since landing in 2012.

The view of this picture is to the south, looking towards the top of Mount Sharp, though that peak, more than 25 miles away, is not visible because the mountain’s lower flanks are in the way. A second movie showing similar charged particle streaks was taken looking south, with the rim of Gale Crater barely visible 20-30 miles away.

The gullies on Mars are caused by a variety of factors, linked to both water and carbon dioxide

The global distribution of gullies on Mars
Click for original image.

In doing a detailed global analysis of all the known gullies on Mars, scientists now believe the gullies are formed by a variety of factors, linked to both water and carbon dioxide as well as the planet’s radically changing rotational tilt — varying from 11 to 60 degrees — over time.

Noblet’s paper articulates a “hierarchy of factors” that describes where gullies occur, with well-supported explanations as to why they form in one place and not another. None of the explanations in this paper are new. What’s new is how Noblet and coworkers reconcile apparent contradictions and inconsistencies among other researchers’ explanations of gully formation, explaining why an explanation that works for one spot on Mars doesn’t work in another.

The map above, from their paper, shows the global distribution of the gullies, which appear to favor the same mid-latitudes where the planet’s glaciers are mostly found. The data from many different studies suggests that when the planet’s rotational tilt was high, these mid-latitudes regions were warmer, and the near-surface ice there would sublimate away to get redeposited at the poles. When this happened the sublimation would cause the pole-facing gullies to form.

The paper also suggests that any gullies changing today are likely the result of the sublimation of carbon dioxide, not water.

There is a lot more at the article at the link, which is an excellent summation of this research.

Research suggests a Mars mission will permanently damage a person’s kidneys

New research now suggests strongly that the exposure to cosmic rays during a three-year-long mission to Mars would cause permanent damage to a person’s kidneys.

The results indicated that both human and animal kidneys are ‘remodelled’ by the conditions in space, with specific kidney tubules responsible for fine tuning calcium and salt balance showing signs of shrinkage after less than a month in space. Researchers say the likely cause of this is microgravity rather than GCR [galactic cosmic rays], though further research is required to determine if the interaction of microgravity and GCR can accelerate or worsen these structural changes.

The primary reason that kidney stones develop during space missions had previously been assumed to be solely due to microgravity-induced bone loss that leads to a build-up of calcium in the urine. Rather, the UCL team’s findings indicated that the way the kidneys process salts is fundamentally altered by space flight and likely a primary contributor to kidney stone formation.

Perhaps the most alarming finding, at least for any astronaut considering a three-year round trip to Mars, is that the kidneys of mice exposed to radiation simulating GCR for 2.5 years experienced permanent damage and loss of function. [emphasis mine]

The study used samples “from over 40 Low Earth orbit space missions involving humans and mice, most of which were to the International Space Station, as well as 11 space simulations involving mice and rats.”

If these results are confirmed, it means that any interplanetary spaceship is going to require significant shielding. Having a safe haven they can go to during high energy solar events will not work, as cosmic rays arrive randomly at all times. This research thus tells us that we can’t simply add engines to the space station designs presently being built to send them to Mars. Instead, we need a heavy-lifte capability (such as Starship) to get the much heavier, well-shielded habitable modules into orbit.

Ed Stone, who ran the Voyager missions for a half century, passes away at 88

Ed Stone, who was the project scientist for both Voyager missions to the outer solar system and beyond for a half century, passed away at 88 on June 9, 2024.

From 1972 until his retirement in 2022, Stone served as the project scientist from NASA’s longest-running mission, Voyager. The two Voyager probes took advantage of a celestial alignment that occurs just once every 176 years to visit Jupiter, Saturn, Uranus, and Neptune. During their journeys, the spacecraft revealed the first active volcanoes beyond Earth on Jupiter’s moon Io, and an atmosphere rich with organic molecules on Saturn’s moon Titan. Voyager 2 remains the only spacecraft to fly by Uranus and Neptune, revealing Uranus’ unusual tipped magnetic poles, and the icy geysers erupting from Neptune’s moon Triton.

Stone was also head of JPL from 1991 to 2001, during the time it built and flew the Mars Pathfinder mission, which sent the first rover to Red Planet. That mission revitalized the entire American Mars exploration program for the next three decades.

Stone was one of the giants of American space exploration during its formative years. He leaves behind a legacy that will be difficult to match, highlighted most of all by both Voyager spacecraft, which outlived him.

Evidence of giant asteroid collision in debris disk surrounding the star Beta Pictoris

Data difference between Spitzer and Webb
Click for original figure.

Scientists comparing infrared data collected twenty years apart — first by the Spitzer Space Telescope and then by the Webb Space Telescope — think they have detected evidence of a gigantic asteroid collision in the debris disk that surrounds the very young star Beta Pictoris, located 63 light years away.

The graph to the right shows the change found between the observations. From the caption:

Scientists theorize that the massive amount of dust seen in the 2004–05 image from the Spitzer Space Telescope indicates a collision of asteroids that had largely cleared by the time the James Webb Space Telescope captured its images in 2023.

…When Spitzer collected the earlier data, scientists assumed something like small bodies grinding down would stir and replenish the dust steadily over time. But Webb’s new observations show the dust disappeared and was not replaced. The amount of dust kicked up is about 100,000 times the size of the asteroid that killed the dinosaurs, Chen said.

It is believed by scientists that the debris disk that surrounds Beta Pictoris is comparable to the early solar system when the planets first started to form. This collision could be similar to the kind of collision that is thought to have formed the Moon, when a large Mars-sized object smashed into the early Earth.

Scientists: Water frost detected in calderas of four Martian volcanos

Frost found on four Martian volcanoes

Scientists using data from two European Mars orbiters think they have detected patches of transient water frost in the calderas of four Martian volcanos, all located in the dry equatorial regions of Mars where previously no near-surface ice has been seen.

According to the study, the frost is present for only a few hours after sunrise before it evaporates in sunlight. The frost is also incredibly thin — likely only one-hundredth of a millimeter thick or about the width of a human hair. Still, it’s quite vast. The researchers calculate the frost constitutes at least 150,000 tons of water that swaps between the surface and atmosphere each day during the cold seasons. That’s the equivalent of roughly 60 Olympic-size swimming pools.

You can read the research paper here. The volcanoes with frost were Olympus Mons, Arsia Mons, Ascraeus Mons, and Ceraunius Tholus, as shown by the blue dots on the overview map to the right. All are in the dry tropics of Mars.

The researchers believe the frost comes from the atmosphere, like dew forming in the morning on Earth. For it to take place at these high elevations on Mars however is astonishing. At these high elevations the atmosphere is extremely thin. Furthermore, the dry tropics have so far been found to contain no near-surface water or ice to fuel these processes.

A close-up of rocks on Mars

Curiosity's robot arm about to take a close look at the ground
Click for original image.

Close-up of rocks on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 6, 2024 by Curiosity’s Mars Hand Lens Imager (MAHLI), located at the end of the rover’s robot arm and designed to get close-up high resolution images of the ground that the arm is exploring.

The picture above, taken just after the one to the right and cropped, reduced, sharpened, and annotated to post here, shows the robot arm shortly after it has rotated upward after placing MAHLI right up against the ground. Note the tread marks. The science team apparently chose these target rocks because they were likely ground somewhat as the rover rolled over them, breaking the rocks to expose new faces.

According to the scientists, the camera was about two to three inches away from these rocks when it snapped the picture, with the scale about 16 to 25 microns per pixel. Since a micron is one millionth of a meter, this picture is showing us some very small details within a much larger rock.

I post this because I have rarely seen such colorful and crystal-like surface features from Curiosity.

1 7 8 9 10 11 271