Japan successfully launches reconnaissance satellite

Japan’s space agency JAXA today successfully launched a reconnaissance satellite for the Japanese government.

The Japan Aerospace Exploration Agency and Mitsubishi Heavy Industries, the H-2A rocket’s main contractor, did not provide a live video webcast of the mission. But news media and other spectators near the launch pad streamed the launch live online, and announcements over loudspeakers at the Tanegashima press site confirmed separation of the IGS Optical 6 satellite in orbit.

The spacecraft’s specifications, including its imaging performance, are kept secret by the Japanese government. But the government has acknowledged the satellite will join a fleet of Information Gathering Satellites operated by the Cabinet Satellite Intelligence Center, which reports directly to the Japanese government’s executive leadership.

The leaders in the 2018 launch standings:

7 China
4 SpaceX
3 Japan
2 ULA
2 Russia

There have been 21 launches in the first two months, continuing January’s pace that suggests we will see more than a hundred launches in 2018, the highest number since 1990.

Stratolaunch completes initial taxi tests

This past weekend Stratolaunch successfully completed its second series of taxi tests, reaching a speed of 40 knots (46 miles per hour) as it moved down the runway.

[I]n December Stratolaunch capped off the year with a successful low-speed taxi test. During the taxi, the vehicle reached a top speed of 28 miles per hour (45 kilometers per hour) as it headed down the runway. Following the test, Aircraft Program Manager George Brugg stated, “This was another exciting milestone for our team and the program. Our crew was able to demonstrate ground directional control with nose gear steering, and our brake systems were exercised successfully on the runway. Our first low-speed taxi test is a very important step toward first flight.”

Last weekend, Sratolaunch kicked off 2018 with two days of additional taxi tests. Most notably, the tests included reaching the maximum taxi speed of 40 knots (46 miles per hour). According to Allen, these tests allowed the team to “verify control responses.”

There is a tiny 35 second video of this last test at the link.

The article provides a lot of details about Stratolaunch and its future, including the suggestion that the giant airplane could become the main launch platform for Orbital ATK’s Pegasus rocket. Pegasus presently has only one launch listed on its manifest, using its L1011 Stargazer airplane.

Microbes found that survive in the driest desert on Earth

Scientists have found that certain microbes can remain dormant for years in the Atacama Desert and then come to life during the rare times water is available.

The Atacama Desert stretches inland 1000 kilometers from the Pacific coast of Chile, and rainfall can be as low as 8 millimeters per year. There’s so little precipitation that there’s very little weathering, so over time the surface has built up a crusty layer of salts, further discouraging life there. “You can drive for 100 kilometers and not see anything like a blade of grass,” Neilson says. Although she and others have found some bacteria there, many biologists have argued that those microbes are not full-time residents, but were blown in, where they die a slow death.

But that didn’t deter Dirk Schulze-Makuch, an astrobiologist at the Technical University of Berlin. “I like to go to places where people say nothing is alive,” he says. “We decided to take a shotgun approach and throw all the new [analytical] approaches at everything—fungi, bacteria, viruses”—that might be there. He and his team collected samples from eight places in the Atacama—from the coast eastward to the driest places—over 3 years. They first gathered material a month after a record-setting rain in 2015, and then followed up with yearly collections in some of the same places in 2016 and 2017. They sequenced all the copies of a gene known to distinguish microbial species to determine what was in those samples and even recovered some full genomes. The researchers also did a test to determine the proportion of DNA that came from intact, living cells. Finally, they assessed the amount of cellular activity; of adenosine triphosphate (ATP), a molecule the fuels this activity; and of byproducts—including fatty acids and protein building blocks—that resulted from that activity to look for additional evidence of life.

The coastal samples contained the most number and diversity of microbes, but in 2015, there were signs of life even in the driest spots, Schulze-Makuch and his colleagues report today in the Proceedings of the National Academy of Sciences. “Following a rainfall event, there is a flush of activity and [cells] are replicating,” Neilson says.

The researchers, as well as the article, push the idea that this result makes life on Mars more possible, but I think that is pushing things quite a bit. The Earth is so filled with life that to find a spot that doesn’t have life on it is almost impossible. The odds work in the favor of hardy life in difficult places. Mars however appears generally lifeless, which makes the odds of there being life more unlikely. Moreover, while the Atacama has many similarities to Mars, the differences are quite profound. To extrapolate any possibilities to Mars from this research is a big overstatement.

Smoking battery at Rocket Lab facility

Capitalism in space: Rocket Lab is investigating why one of the rocket batteries for its Electron rocket started smoking over the weekend.

Rocket Lab is investigating what caused a rocket battery to overheat and start smoking at its manufacturing facility near Auckland Airport on Sunday night. Rocket Lab spokeswoman Morgan Bailey said fire emergency services were called as a precaution to its site in Mangere at 7pm on Sunday after a battery on an Electron rocket overheated and started smoking.

She said she did not know what action was being made on the rocket when the battery overheated, but the company was looking into it.

No one was hurt in the incident.

They are clearly being tight-lipped about this, partly because of the bad press it might cause and partly because they don’t wish to reveal proprietary information.

Note that this article has me rethinking Rocket Lab as an American company. Based on this article their operations and manufacturing are both in New Zealand. It seems that even if the company was conceived and officially incorporated in the U.S., the rocket is a New Zealand born baby.

Former Vostochny head and comrades sentenced to jail

Several former top managers of the lead contractor building Russia’s new spaceport Vostochny have now been sentenced to prison for embezzlement.

Yury Khrizman, former head of Dalspetsstroy, and Vladimir Ashikhmin, the company’s former chief accountant, were found guilty of abuse of office and embezzlement, a court official told Interfax. Khrizman was sentenced to 12 years in jail and Ashikhmin received seven years in jail.

“The other people implicated in the case, Viktor Chudov, former chairman of the Khabarovsk Territory’s duma, and Mikhail Khrizman [the son of Yury Khrizman], also got jail terms. Viktor Chudov received six years in a penal colony and Mikhail Khrizman was sentenced to 5.5 years in jail,” the court official said. The court also ordered the convicts to pay 5.16 billion rubles in damage as part of the Roscosmos lawsuit, he said.

Not for an instant do I believe this case cleans out the corruption in Russia’s aerospace industry. All this does it to tell all present managers that if you are going to steal, don’t steal so much that you cause a delay in the project itself. The reason these guys are going to prison is that they got greedy and stole too much, thus causing the completion of Vostochny to be significantly late, with many of its workers not getting paid.

Curiosity science team to attempt first drilling in a year

After a year of tests and engineering rethinking, the Curiosity science team has decided to attempt drilling its first hole in more than a year.

From yesterday’s Curiosity mission update:

Because there is only so much data volume and rover power to go around, performing drill activities must temporarily come at the expense of scientific investigations (although you’d be pressed to find a disappointed science team member this week, as the drilling campaign will bring loads of new scientific data!). As a result, with the exception of some environmental observations by the Rover Environmental Monitoring Station (REMS) instrument, today’s plan does not have any targeted scientific observations within it. Today will instead be dedicated to drill preload activities and imaging for engineering and rover planning purposes in preparation for a full test of the revised drilling operations.

The problem with the drill has been its feed mechanism, the equipment that moves the drill downward into the hole. As designed the robot arm would get planted on the surface to provide stability for the drill, which as it drilled would be pushed downward that that feed mechanism. Last year they found something had clogged that mechanism so that it would not retract properly.

From what I understand, what they have tested and have decided to try instead is to place the drill against the surface in an extended position, and use the arm itself to push the bit downward. The concern is whether the arm can hold the drill steady. They have done some tests and think it can. We shall soon find out.

SpaceX successfully launches Spanish radar satellite

Capitalism in space: SpaceX today successfully launched a Spanish radar satellite.

They also intended to try to recover the rocket’s fairing, but they did not telecast this, and there is no word yet whether they were successful. In fact, their low-key approach here suggests a shift in policy. Previously, SpaceX was eager to show off its test programs. Now, this silence suggests a desire to throttle back on that openness, possibly in order to protect their proprietary engineering.

Update: It appears that at least one fairing half landed in the water intact, though that also means they were unable to catch it. According to a Musk tweet at the link, the fairing missed the ship net by “a few hundred meters.” Musk also indicates the need for larger chutes in the future. Either way, I wonder if the fairing in the water can still be reused.

The 2018 launch standings:

7 China
4 SpaceX
2 ULA
2 Russia
2 Japan

As a nation, the U.S. now has 7 launches total, tying China.

Bigelow establishes company to market its private space stations

Capitalism in space: Bigelow Aerospace yesterday established a marketing company to research and find potential customers for its private space stations.

“You’ll need deep pockets if you’re interested in staying aboard a Bigelow station; prices will likely run in the ‘low seven figures,'” Bigelow said today. He doesn’t expect tourist jaunts to make up the bulk of his business, however. “What we’ve always anticipated and expected is that we would be very involved in helping foreign countries to establish their human space programs, and be able to facilitate whatever their needs were in whatever context that they wanted to pursue,” he said. “The corporate world, obviously, is huge, and [leveraging] that is also our intent.”

Bigelow already says it will launch to of its large B330 modules in 2021, with another aimed for lunar orbit in 2022. I must note that the 2021 launch date appears to be year later then earlier announcements.

The first SLS mobile launcher is leaning

Though NASA says it is not a problem, they have now revealed that the very expensive mobile launcher to be used for the first unmanned SLS launch in 2019, is leaning slightly.

The notes spoke of engineers being concerned about a lean towards the North – which would be towards the rocket when mated – with the angle of the leaning claimed to be seen as increasing when the Vertical Stabilizer porch was installed. It was also claimed the ML Tower is twisting and this issue increased when the porch was installed. This was cited as the reason additional arm installations onto the Tower were placed on hold, until the leaning-twisting issue is understood. Next in line for installation are the ICPS (Interim Cryogenic Propulsion Stage) Umbilical Arm, the Crew Access Arm and the two Vehicle Stabilizer Arms.

NASASpaceFlight.com’s Philip Sloss took the concerns to NASA to ask for clarifications. NASA responded, saying “the ML leaning/bending was not the cause of the delay in the install of the Crew access arm. These are unrelated.” However, they did expand on the specific issue, mainly to note it is understood and does not currently require any additional mitigation or modification to the ML.

“NASA’s mobile launcher is structurally sound, built to specifications, and does not require a design change or modifications. As expected, the mobile launcher is not perfectly still,” a NASA spokesperson added.

Note that this mobile launcher is not compatible with the second SLS launch, which would be the first manned flight in 2023. NASA will either have to modify it significantly at great costs, or build another, discarding this launcher after only one use.

More details about SpaceX’s fairing recovery plans

Link here. The article has some additional excellent images, but it was this paragraph that I thought was most significant:

To oversimplify, after launch, the payload fairing separates (mechanically) from the second stage once Falcon 9 or Heavy has left behind the majority of Earth’s atmosphere. After separation, each fairing half orients itself for a gentler reentry into the atmosphere with cold nitrogen gas thrusters, likely the exact same thrusters used in part to achieve Falcon 9’s accurate and reliable landings. Due to their massive surface area and comparatively tiny weight, fairing halves effectively become exceptionally finicky and awkward sails falling through the atmosphere at insane velocities, with the goal generally being to orient each half like a boat’s hull to provide some stability. Once they are low enough, assuming they’ve survived the journey from TEN TIMES THE SPEED OF SOUND and 62 MILES above Earth’s surface to a more reasonable ~Mach 0.5 and maybe 5 miles of altitude, the fun parts begin. At this point, each fairing half deploys a GPS-connected parachute system (a parasail, to be exact) capable of directing the massive hunks of carbon fiber and aluminum to a very specific point on the surface of the ocean.

What we don’t yet know is whether SpaceX will have cameras on the fairing, and if so, whether they will make those images available to the public, during launch.

Planetary Resources misses fund-raising target

Capialism in space: Planetary Resources has failed to meet a recent fund-raising target.

A spokeswoman for Planetary Resources, Stacey Tearne, told GeekWire that financial challenges have forced the company to focus on leveraging the Arkyd-6 mission for near-term revenue — apparently by selling imagery and data. “Planetary Resources missed a fundraising milestone,” Tearne explained in an email. “The company remains committed to utilizing the resources from space to further explore space, but is focusing on near-term revenue streams by maximizing the opportunity of having a spacecraft in orbit.”

Tearne said no further information was available, and did not address questions about employment cutbacks. However, reports from other sources in the space community suggest there have been notable job reductions. For what it’s worth, Planetary Resources had more than 70 employees at last report.

When this company first appeared with a big splash, shouting its plans to mine asteroids, I said “Bunk, it’s going to be a smallsat telescope company for years to come, either looking at the Earth or into space.” And that is where we are. The “near-term revenue streams” hinted at above are certainly the kind of earth-observation imaging that numerous other smallsat companies are providing. Whether Planetary Resources can compete with the large number of already established smallsat earth-observation companies, however, is the big question.

Mining asteroids by commercial companies for profit makes sense, and will eventually happen. I think, however, that this company oversold its abilities when it tried to convince everything that this is what it planned to do, right away.

Giant net to catch Falcon 9 fairing

This link provides a series of pictures, taken from a distance, of the giant net, and the structures that hold it up, that will be used by the SpaceX barge ship to try to catch the rocket’s fairing during its next launch later this week. (See comments.)

Hat tip reader Kirk Hilliard. The pictures don’t show the barge itself, but they do give a sense of the size of the net. This suggests that SpaceX has equipped the fairing with small jets capable of guiding it to the barge, where it will be caught as it falls at high speed. It could also be that they have found that the fairing itself can act as a parachute and slow itself down as it descends, meaning that impact will not be that intense.

Regardless, I wonder if they will have any cameras on board either the fairing or the barge, and whether they will broadcast them live as it comes down. I wouldn’t be surprised if they didn’t, as it would possibly reveal proprietary information, but the images would certainly be impressive to see.

If they succeed, they will have a rocket that is almost entirely reusable, with only a single 2nd stage engine (out of 10 total) and the second stage itself not reused.

Posted from the Israeli city of Tiberius on the shore of the Sea of Galilee.

Mars Reconnaissance Orbiter in safe mode

After detecting low battery voltage, Mars Reconnaissance Orbiter (MRO) went into safe mode on February 15.

The orbiter is solar-powered but relies on a pair of nickel-hydrogen batteries during periods when it is in the shadow of Mars for a portion of each orbit. The two are used together, maintaining almost identical charge during normal operations.

The spacecraft remains in communication with Earth and has been maintaining safe, stable temperatures and power, but has suspended its science observations and its service as a communications relay for Mars rovers. Normal voltage has been restored, and the spacecraft is being monitored continuously until the troubleshooting is complete.

It appears that all is under control. If MRO goes down, however it will a big loss for Mars research, as the spacecraft not only produces the highest resolution images of the ground, it also acts as one of several communications satellites between the Earth and the rovers on Mars. With two rovers there now, and at least two more planned for arrival in 2020, the loss of this communications link would be crippling.

Aligned erosion lines of Perseverance Valley

The uncertainty of science: Last week, while I was flying to Israel, the Opportunity science team announced the discovery of strange aligned erosion lines, what they are calling stone stripes, in Perseverance Valley.

The ground texture seen in recent images from the rover resembles a smudged version of very distinctive stone stripes on some mountain slopes on Earth that result from repeated cycles of freezing and thawing of wet soil. But it might also be due to wind, downhill transport, other processes or a combination.

…On some slopes within the valley, the soil and gravel particles appear to have become organized into narrow rows or corrugations, parallel to the slope, alternating between rows with more gravel and rows with less.

The origin of the whole valley is uncertain. Rover-team scientists are analyzing various clues that suggest actions of water, wind or ice. They are also considering a range of possible explanations for the stripes, and remain uncertain about whether this texture results from processes of relatively modern Mars or a much older Mars.

For those who are regular readers of Behind the Black, you already knew about a variation of this discovery back in November 2017, from my regular rover updates. Then, they discovered aligned groves in the gravel that looked to me like slickensides, erosion patterns produced by glacial activity. The science team told me, however, that they were favoring wind, not ice, as a primary cause, though that conclusion was far from certain.

In the press release last week, they focused more on the aligned erosion patterns in the fine gravel that appear to align perpendicular to the slope. Though they think they have found a comparable Earth-based phenomenon that might explain these patterns, it appears that the science team remains just as unsure of their cause as they are for the rocks.

Rocket Lab to launch NASA and Naval Academy smallsats

Capitalism in space: Rocket Lab has obtained contracts with both NASA and the U.S. Naval Academy to launch a dozen cubesats.

Rocket Lab says it has performed a successful fit check of the CubeSat dispensers for the NASA Venture Class Launch of its Educational Launch of Nanosatellites (ELaNa) XIX mission, which will put a total 12 mini CubeSats into orbit.

A Rocket lab spokeswoman said those would include the Shields-1 payload from NASA’s Langley Research Center, which would focus on studying the harmful effects of harsh radiation environments to spacecraft.

The article doesn’t give any information on the contract itself.

SpaceX’s Saturday launch will two test smallsats for its planned 11K internet constellation

Capitalism in space: SpaceX will include two test smallsats for its planned internet constellation of more than 11k satellites when launches a Spanish radar satellite in two days.

The FCC gave SpaceX permission for the test in November, and new documents now show that SpaceX will piggyback Microsat-2a and Microsat-2b onto its launch of a Spanish radar satellite called Paz. The mission is set to lift off from the Vandenberg Air Force Base in California on Saturday at 9:14 a.m. ET aboard a Falcon 9 rocket, according to Spaceflight Now.

Ajit Jai, chairperson of the FCC — the government entity which must ultimately approve SpaceX’s plans — endorsed the effort on Wednesday. “Satellite technology can help reach Americans who live in rural or hard-to-serve places where fiber optic cables and cell towers do not reach,” Pai told Reuters in a statement.

A lot of news sources have made a big deal about Jai’s endorsement, as if that endorsement guarantees FCC approval of SpaceX’s gigantic constellation. It doesn’t, though it certainly helps.

Vector gets new contract for five launches

Capitalism in space: Vector has signed a contract with nanosat company Open Cosmos, which has reserved five launches from 2019 to 2023.

The most interesting tidbit in this press release was where it says that Vector is planning its first orbital launch of its Vector-R rocket in July. According to the plans their CEO Jim Cantrell had described to me when he gave me a tour of their facility in March 2017, they were going to do five suborbital test launches before doing an orbital flight. So far they have done two of these. Either they plan to do the remaining three in the next six months, or are going to go orbital sooner than originally planned.

SpaceX cancels Texas subsidy that required Boca Chica operation in 2018

Capitalism in space: SpaceX has canceled a small Texas subsidy that required it to begin operations at its Boca Chica spaceport by September 2018.

The company terminated a deal reached with the office of then-Gov. Rick Perry in late 2013 that earmarked $2.3 million from the Texas Enterprise Fund for the future spaceport at Boca Chica beach, which is near Brownsville. The project has experienced delays and SpaceX had received about $400,000 of the money, but it now has paid back all of it.

The deal mandated that, to receive the incentives dollars, the spaceport be operational by Sept. 30 this year and employ 180 people by the end of 2018. It appears SpaceX was unlikely to meet either target.

This does not mean that SpaceX is abandoning the spaceport, only that it can’t meet the schedule required by this subsidy. This also might explain why they requested an additional $5 million from Texas. They knew they were going to lose this $2.3 million subsidy and were lobbying to make up for it with other state funds.

Hat tip Robert Pratt of Pratt on Texas.

Europe suddenly realizes that reusable rockets are possible and economical

The head of the European Space Agency (ESA) has admitted in his blog that the agency’s future rockets, Ariane 6 and Vega C, are not going to be competitive because they will not be reusable.

The promise to secure autonomous access to space and reduce the price by a factor of 2 proved sufficiently compelling to secure ESA member states’ agreement to finance the development. At that time, I succeeded in placing environmental concerns and the possible development of reusability among the high-level requirements:

  • Maintain and ensure European launcher competence with a long-term perspective, including possibility of reusability/fly-back.
  • Ensure possibility to deorbit upper stage directly

Due to time and cost pressure, however, these aspects did not make it onto the agenda for Ariane 6 and Vega C. Yet in the meantime, the world has moved on and today’s situation requires that we re-assess the situation and identify the possible consequences. In many discussions on the political level, the strategic goal of securing European autonomous access to space has not changed, however there is a growing sense that pressure from global competition is something that needs to be addressed. With Vega C, Ariane 62 and Ariane 64 approaching completion, it seems logical to complete these launchers in order to at least take that major step towards competitiveness. At the same time, it is essential that we now discuss future solutions, including disruptive ideas. Simply following the kind of approaches seen so far would be expensive and ultimately will fail to convince. Totally new ideas are needed and Europe must now prove it still possesses that traditional strength to surpass itself and break out beyond existing borders. In this sense, the process of discussing and deciding on a launcher system that eschews traditional solutions can send a powerful signal out into other areas as well. I therefore intend to invite innovative, really interested European players to come together to define possible ways forward. [emphasis mine]

Let me translate his bureaucratic wording: “We didn’t think reuseable rockets were practical, economical, or even possible. We took a safe route in designing Ariane 6 and Vega C. We screwed up, and now face a competitive market in which our rockets cannot compete. Thus, we need to move fast to copy the private sector, SpaceX and Blue Origin in particular, or face serious financial consequences.

Unless he forces some major cultural changes in ESA, however, I expect that by the time this government-run operation manages to duplicate the achievements of those two private companies, those companies will have marched on to even more innovative successes.

Massive flow on Mars

Massive flow on Mars

Cool image time! The image on the right, cropped to post here, comes from a Mars Reconnaissance Orbiter image that shows a massive relatively recent and dark slope streak that emanates out from a single point on the surface. (Note that the release at this link rotates the image so that north points down. I have rotated back so that north points up.)

Streaks form on slopes when dust cascades downhill. The dark streak is an area of less dust compared to the brighter and reddish surroundings. What triggers these avalanches is not known, but might be related to sudden warming of the surface.

These streaks are often diverted by the terrain they flow down. This one has split into many smaller streaks where it encountered minor obstacles. These streaks fade away over decades as more dust slowly settles out of the Martian sky.

Point of origin for flow

Location of flow, west of Olympus Mons

The MRO release focuses on the fingerlike breakup of the flow as it descends into sand-dune filled plain. What is more interesting to me is the terrain where this flow originated. A close-up of that area from the full image, shown on the right, reveals a feature that could be a wash running in line with the flow’s origin, and leading uphill to a dark feature that is a likely a cliff face. (The light in this image is coming from the southeast.)

This location, at 15.2N latitude, 214.9E longitude and shown by the small cross in the image on the right and captured from this page, is west of Olympus Mons, the largest volcano on Mars. This suggests to me that the originating feature might be an outlet from a lava tube, from which water suddenly seeped out to produce this massive slope streak. A look at the mesa from which this flow came, cropped from the full image and posted below the fold, shows numerous similar slope streaks of varying ages flowing out of this mesa, with some very faint because they occurred farther in the past. Some are even within the bowl at the top of the mesa.

Whether these come from lava tubes is definitely unclear, and I suspect I will be told by geologists not likely. The seeps however do suggest strongly that this mesa might be a very good location for future colonists to look for underground water ice. Since clouds form on the western slopes of Arsia Mons, the southernmost of the three giant volcanoes to the east of Olympus Mons, and that past glacial activity has been documented there, I wonder if some of these same conditions might also exist here, on the nearby terrain west of Olympus Mons.
» Read more

Trump to propose transitioning ISS to private hands post 2024

It appears that the Trump administration will propose in its 2019 budget, to be released today, to cease funding ISS in 2024 but to aim at a full transition to private control so that the station is not de-orbited when federal funding ceases.

The approach the administration has chosen is one that would end NASA funding of the ISS in 2025, while offering support for the development of commercial successors. “In support of enabling a timely development and transition of commercial capabilities in LEO where NASA could be one of many customers in the mid-2020s, the Administration is proposing to end direct Federal support for the ISS in 2025 under the current NASA-directed operating model,” the document states.

The 2019 budget proposal will offer $150 million “to enable the development and maturation of commercial entities and capabilities which will ensure that commercial successors to the ISS – potentially including elements of the ISS – are operational when they are needed.” The document says “increasing investments” above that $150 million will be included in future years’ budget requests.

The end of federal funding for the ISS would not necessarily mean the end of the station, or at least some parts of it, according to the document. “[I]t is possible that industry could continue to operate certain elements or capabilities of the ISS as part of a future commercial platform,” it states.

Not surprisingly, there are already hints that there will be massive opposition to such a plan, as it will shift power (and responsibility) from the government to private contractors. Some in Washington will not want the government to lose that power. And some private contractors are simply unwilling to shoulder the responsibility for figuring out how to make money from the station, something that is certainly possible since the development costs will have been fully paid for by the taxpayer.

A good health check for Mars Reconnaissance Orbiter

Link here. The article outlines in good detail the spacecraft’s present condition, which is excellent despite being in space since 2005, as well as outlining the measures being taken to keep it operational into the 2020s.

This item is probably the biggest cause for concern:

For example, some HiRISE images taken in 2017 and early 2018 show slight blurring not seen earlier in the mission. The cause is under investigation. The percentage of full-resolution images with blurring peaked at 70 percent last October, at about the time when Mars was at the point in its orbit farthest from the Sun. The percentage has since declined to less than 20 percent. Even before the first blurred images were seen, observations with HiRISE commonly used a technique that covers more ground area at half the resolution. This still provides higher resolution than any other camera orbiting Mars — about 2 feet (60 centimeters) per pixel — and little blurring has appeared in the resulting images.

HiRISE is the spacecraft’s primary instrument, and its most valuable. If it goes, we will lose our best tool right now for looking in detail at the Martian surface.

SSL lawsuit against Orbital ATK to move forward

A judge has ruled that a lawsuit brought by SSL against Orbital ATK, two companies competing for satellite servicing work, can go forward.

The case stems a December 2016 incident where NASA officials notified SSL that there had been unauthorized access to SSL documents related to a NASA “Tipping Point” technology development award on a server at the Langley Research Center. SSL had received that award earlier in the year to work on technologies related to in-space satellite servicing.

That unauthorized access was traced to an Orbital ATK employee, who was subsequently fired by the company. However, SSL said in its suit that as many as six Orbital ATK employees viewed the documents. SSL filed the suit in March 2017 seeking an injunction to prevent Orbital ATK from using any of those documents in its own projects, as well as “other and further relief the Court may deem just and appropriate.”

Both companies have satellite servicing missions planned. What I want is for both to succeed, to provide some competition in the field. Though I suspect this is doubtful, this lawsuit has the possibiliity of killing Orbital ATK’s effort.

New Horizons takes the most distant pictures from Earth ever taken

Kuiper Belt Object 2012 HE85

The New Horizons science team has released three images taken by the spacecraft from almost 3.8 billion miles from Earth, the most distant images ever taken.

The routine calibration frame of the “Wishing Well” galactic open star cluster, made by the Long Range Reconnaissance Imager (LORRI) on Dec. 5, was taken when New Horizons was 3.79 billion miles (6.12 billion kilometers, or 40.9 astronomical units) from Earth – making it, for a time, the farthest image ever made from Earth.

…LORRI broke its own record just two hours later with images of Kuiper Belt objects 2012 HZ84 and 2012 HE85 – further demonstrating how nothing stands still when you’re covering more than 700,000 miles (1.1 million kilometers) of space each day.

The images themselves are not spectacular to look at, though the two images of two different Kuiper Belt objects are the best ever taken of such objects, and certainly contain data that scientists will be able to use. The image on the right is one of these objects, 2012 HE85. For example, note how it does not appear to be round.

This exercise is in preparation for the January 1, 2019 fly-by of 2014 MU69, where the images will be sharp and detailed, and provide us a good look at such a distant object.

NASA approves 2020 launch window for first Dream Chaser flight

Capitalism in space: Sierra Nevada has gotten the okay from NASA to aim for a 2020 launch window for the first flight of its reusable Dream Chaser mini-shuttle.

SNC announced Feb. 7 that it had received “authority to proceed” on that mission using the company’s Dream Chaser vehicle. The mission will launch on a United Launch Alliance Atlas 5 rocket in late 2020. The mission is the first of six in the company’s Commercial Resupply Services (CRS) 2 contract it won in 2016 to transport cargo to and from the ISS. SNC received a CRS-2 contract along with current CRS providers Orbital ATK and SpaceX.

“While we won the contract a couple of years ago, the contract still needed to be validated by a task order,” said Mark Sirangelo, executive vice president of SNC’s Space Systems business area, in a Feb. 7 speech at the Federal Aviation Administration’s Commercial Space Transportation Conference here. That order, he said, is the “biggest step” to date on the program. That flight will be a “full scale, fully operational mission,” he said, even though it will represent the first orbital flight of the Dream Chaser. Orbital ATK and SpaceX, who developed their Cygnus and Dragon spacecraft, respectively, under earlier NASA Space Act Agreements, flew demonstration missions before starting their operational CRS cargo flights.

Do not be surprised if this flight does not launch on schedule. I fully expect that development will push it back into 2021, a delay that would not be unreasonable.

Mars rover update: February 8, 2018

Summary: Curiosity remains on Vera Rubin Ridge, though it has begun moving toward the point where it will move down off the ridge. Opportunity remains in Perseverance Valley, though it has finally taken the north fork down.

Before providing today’s update, I have decided it is time to provide links to all previous updates, in chronological order. This will allow my new readers to catch up and have a better understanding of where each rover is, where each is heading, and what fascinating things they have seen in the past year and a half.

These updates began when I decided to figure out the overall context of Curiosity’s travels, which resulted in my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. Then, when Curiosity started to travel through the fascinating and rough Murray Buttes terrain in the summer of 2016, I stated to post regular updates. To understand the press releases from NASA on the rover’s discoveries it is really necessary to understand the larger picture, which is what these updates provide. Soon, I added Opportunity to the updates, with the larger context of its recent travels along the rim of Endeavour Crater explained in my May 15, 2017 rover update.

Now to talk about the most recent news from both rovers!
» Read more

1 297 298 299 300 301 482