Is this really a spiral galaxy?

Is this really a spiral galaxy?

The uncertainty of science: The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope and released on March 4, 2024 by the PR department of the European Space Agency (ESA) as part of its Hubble Picture of the Week program. It shows what the press release claims is a spiral galaxy about 55 million light years away, seen edge on.

In this image NGC 4423 appears to have quite an irregular, tubular form, so it might be surprising to find out that it is in fact a spiral galaxy. Knowing this, we can make out the denser central bulge of the galaxy, and the less crowded surrounding disc (the part that comprises the spiral arms).

If NGC 4423 were viewed face-on it would resemble the shape that we most associate with spiral galaxies: the spectacular curving arms sweeping out from a bright centre, interspersed with dimmer, darker, less populated regions. But when observing the skies we are constrained by the relative alignments between Earth and the objects that we are observing: we cannot simply reposition Earth so that we can get a better face-on view of NGC 4423!

This picture provides a great example of the amount of assumptions that are often contained in astronomical observations. Though the data strongly suggests this is spiral, we must remember this is merely an educated guess, based on that central bulge and the dust lanes visible along the galaxy’s profile. There is actually no guarantee that this is so. As the press release also notes, astronomers are constrained by our viewpoint, and cannot change that viewpoint to get a better view to confirm this guess. For all we know, a face on veiw of this flat galaxy would reveal it has no spiral arms, but instead is mottled and chaotic, a rare type that does exist.

Astronomers do the best they can, but it is important that they (and we) always recognize the limitations.

Another helicopter mission under development for Mars?

Another helicopter mission for Mars?
Click for original image.

Today’s cool image to the right, cropped to post here, is probably on its own one of the more boring cool images I have posted over the years, a generally featureless plain with some ripple dunes within a few low hollows.

What makes this picture cool however is the label for the image: “Sample Landing and Traverse Hazards at Possible Helicopter Landing Site.” The picture was taken on January 23, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), with the obvious goal of seeing whether this location can serve as a landing site for a helicopter mission to Mars.

The site is relatively uninteresting because the first goal is to find a safe place to land, but to do so near a location where there is rough geology which only a helicopter can explore. And it appears, from the overview map below, that is exactly what this location is.
» Read more

Scientists: Europa produces oxygen on its surface, but less than expected

Graphic of Europa
Click for original image.

The uncertainty of science: Scientists using data from a 2022 flyby of the Jupiter moon Europa by the orbiter Juno have determined that the moon produces about 1,000 tons of oxygen every 24 hours on its surface, a large amount but less than most predictions based on previous indirect observations.

The paper’s authors estimate the amount of oxygen produced to be around 26 pounds every second (12 kilograms per second). Previous estimates range from a few pounds to over 2,000 pounds per second (over 1,000 kilograms per second). Scientists believe that some of the oxygen produced in this manner could work its way into the moon’s subsurface ocean as a possible source of metabolic energy.

You can read the paper here. The graphic shows the basic process, as presently theorized. What remains unknown is how or even if that oxygen is transported downward to the theorized underground ocean of liquid water. That the amount created is on the very low end of previous estimates suggests that there will be less free oxygen to support life in that ocean than expected.

SLIM put back to sleep for second lunar night

Engineers at Japan’s space agency JAXA have put their SLIM lunar lander back to sleep on February 29, 2024 with the hope it might survive its second night on Moon.

“Although the probability of failure will increase due to repeated severe temperature cycles, SLIM plans to try operation again the next time the sun shines (in late March),” the update from JAXA read, automatically translated from Japanese to English by Google.

Like Intuitive Machines Odysseus lunar lander, SLIM’s overall mission was a success, as it proved it could land automatically within a very small target zone and do so softly enough that it could send back data to Earth. The failures and problems experienced by SLIM, such as having a nozzle fall off causing it land sideways are simply fixes that can be instituted on future missions.

Ingenuity’s final resting place on Mars

Panorama showing Ingenuity in Jezero Crater
Click for original image.

Overview map
Click for interactive map.

Time for one last cool image of Ingenuity. The picture above, cropped, reduced, and annotated to post here, was created from a mosaic of 67 images taken on February 21, 2024 by the high resolution camera on the Mars rover Perseverance. The white rectangle marks the approximate area covered by the image below, a mosaic of seven pictures taken on February 24, 2024 by Perseverance’s Remote Microscopic Imager camera, normally used to take very close images of nearby rocks but repurposed here to provide a close up of Ingenuity about 1,365 feet away, inside Neretva Vallis. Ingenuity is on the right, and the speck on the left is the section of the rotor blade that broke off and was apparently flung about 49 feet away.

On the overview map to the right, the blue dot marks Perseverance’s position, the green dot Ingenuity’s, and the yellow lines mark the approximate area covered by the panorama above. The red dotted line is Perseverance’s planned route in the coming months.

Close-up of Ingenuity and broken rotor blade
Click for original image.

Astronomers discover new moons around Neptune and Uranus

Using a observations over several years from a number of ground-based telescopes, astronomers have now identified two new moons around Neptune and one new moon circling Uranus.

The new Uranian member brings the ice giant planet’s total moon count to 28. At only 8 kilometers, it is probably the smallest of Uranus’ moons. It takes 680 days to orbit the planet. Provisionally named S/2023 U1, the new moon will eventually be named after a character from a Shakespeare play, in keeping with the naming conventions for outer Uranian satellites.

…The brighter Neptune moon now has a provisional designation S/2002 N5, is about 23 kilometers in size, and takes almost 9 years to orbit the ice giant. The fainter Neptune moon has a provisional designation S/2021 N1 and is about 14 kilometers with an orbit of almost 27 years. They will both receive permanent names based on the 50 Nereid sea goddesses in Greek mythology.

The two new Neptune moons raises its moon total now to sixteen. The orbits of all three are tilted and eccentric and far from the planets, strongly suggested they are capture asteroids, not objects formed at the same time as the planet.

A Martian cliff of ash, flushed by wind

A Martian cliff of ash flushed by wind
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Described merely as an “exposed scarp” by the science team, this cliff edge is actually much more.

First some basic details. The elevation drop from the plateau down to the base of this cliff is about a thousand feet. The material that forms this plateau, scarp, and its base is all volcanic ash. The thicker sections of ash has caused its lower levels to compress, harden into a kind of sandstone. Near the surface however it is more friable, and like sandstone can break apart somewhat more easily.

The prevailing winds at this site are generally blowing to the south, but beginning to turn to the east, which explains the northwest to southeast orientation of the features.

The best analogy I can come up with to explain the erosion of this scarp is as follows: Imagine a deposit of dry mud a few inches thick on pavement. Take a leaf blower and blow at it hard, always in one direction. Eventually the outer edge will break up and blow away, leaving a sharp edge, that will also retreat with time as the wind continues to blow.

Here the winds are eroding that cliff, causing periodic avalanches which dissolve into sand that then blows away, leaving no debris pile at the base of the cliff. The ridges indicate harder material, that breaks away last, which is why there are some ridgelines extending outward from the scarp in line with these ridges. At the same time, these ridges of harder ash still break up with time, as some are cut off suddenly at the cliff edge.
» Read more

Final images from Odysseus, lying on its side

One of three pictures downloaded after landing
Click for original picture.

In a press conference yesterday, NASA and the private company Intuitive Machines released three pictures taken by the Odysseus lunar lander after it came down a bit too fast, skidded on the ground so that one leg broke, and then tilted over.

The first images from the lunar surface are now available and showcase the orientation of the lander along with a view of the South Pole region on the Moon. Intuitive Machines believes the two actions captured in one of their images enabled Odysseus to gently lean into the lunar surface, preserving the ability to return scientific data.

The best picture, reduced and annotated to post here, is to the right. The spacecraft is tilted about 30 degrees from the vertical. Another picture showed the broken leg on the lander’s other side. The “two actions” mentioned in the NASA quote above refer to the issues that caused the broken leg: the limited ground data the lander used to land, and its larger than expected lateral speed.

The spacecraft is expected to be shut down by today because of lack of power and the advent of the long lunar night. Company officials remain hopeful it will come back to life when the sun rises in several weeks.

Officials from both NASA and Intuitive Machines have correctly noted that this was an engineering test mission, so even these failures make it a success in that the company can use them to improve the next lander. Nonetheless, it would have been nice if things had worked better on this first flight, especially because the problem that led to all the breakdowns, the failure to turn the lander’s range finding system back on after installation on the rocket, was an incredibly stupid human error that should not have happened at all.

National Science Foundation decides to fund only one giant telescope

The National Science Foundation (NSF) has decided that its astronomy program does not have sufficient funds for building both the Thirty Meter Telescope (TMT) in Hawaii and the Giant Magellan Telescope (GMT) in Chile, and will decide in May which one it will choose.

The GMT and TMT—both backed by consortia of universities, philanthropic foundations, and international partners—set out to build their next generation instruments in the early 2000s. But this privately funded approach, which during the 20th century produced the twin 10-meter Keck telescopes in Hawaii and the two 6.5-meter Magellan telescopes in Chile, stumbled when it came to multibillion-dollar projects. Although design work and mirror casting forged ahead, both projects failed to amass enough funding to complete construction. (A dispute with Native Hawaiians over the Hawaii site has also slowed the TMT.)

I predict that this decision puts the final nail in TMT’s coffin. That telescope was on schedule in 2015 — when construction was set to begin — to be already operational now, well ahead of GMT. The opposition in Hawaii by a minority of leftist protestors, who also had the backing of the state government (run entirely by the Democratic Party), blocked that construction even as the building of GMT’s mirrors proceeded.

Almost a decade later, while TMT sits in limbo, unbuilt, GMT is nearing completion, with its last mirror presently being fabricated and construction at its site now more than half done. It is expected to be finished by 2028, and is almost certainly going to get that NSF funding.

As I noted however in July 2023,

Not that any of this really matters. In the near term, ground-based astronomy on Earth is going to become increasingly impractical and insufficient, first because of the difficulties of making good observations though the atmosphere and the tens of thousands of satellites expected in the coming decades, and second because new space-based astronomy is going to make it all obsolete. All it will take will be to launch one 8-meter telescope on Starship and [GMT] will become the equivalent of a buggy whip.

The great tragedy of TMT is that the astronomers themselves at the project were not willing to fight that tiny minority of protesters, whose protests were based on the essentials of critical race theory that makes whites the devils and all other minorities saints. As academics trained in these insane ideas, the astronomy community accepted this bigoted premise, and out of guilt allowed those protesters to rule.

Inspector General: Mars Sample Return mission in big trouble

The present plan for Mars Sample Return

Though the audit published today [pdf] by NASA’s inspector general of the NASA/ESA Mars Sample Return mission partnership tries to couch its language positively, the conclusion one reaches by reading the report is that the project is a mess and will almost certainly not fly when scheduled in 2029, and might even get delayed so much that the Perseverance rover on Mars — an essential component of the mission plan — might no longer be operational at that time.

First the budget wildly out of control.

The trajectory of the MSR Program’s life-cycle cost estimate, which has grown from $2.5 to $3 billion in July 2020, to $6.2 billion at KDP-B in September 2022, to an unofficial estimate of $7.4 billion as of June 2023 raises questions about the affordability of the Program.

In addition, the audit noted that this is not the end, and that based on another independent review the budget could balloon to $8 to $11 billion before all is said and done. (I will predict that as presently designed, that budget will likely reach $15 billion.)
» Read more

A recent volcanic eruption on Mars?

A recent volcanic eruption on Mars?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on December 16, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labels the two darkened patches in the picture “plume-like features,” suggesting that the dark material was eruptive material thrown out from the depressions in a volcanic venting, that then settled on the nearby surrounding terrain.

Is that a correct interpretation? It is certainly strengthened by a different feature located about 550 miles to the northwest that looks almost the same. There, researchers theorize that the dark material surrounding a surface fissure was caused by a small volcanic event that occurred somewhere between 50,000 to 210,000 years ago. For that other location, scientists concluded as follows:

After careful comparison of this symmetrical dark feature with other dark wind-caused streaks in this region, the scientists concluded that it was not caused by wind, but is the remains of a relatively recent volcanic eruption that laid down a thin layer of material only about one foot thick.

» Read more

First image from Odysseus on the lunar surface

Odysseus' view on the Moon
Click for original image.

Engineers have managed to finally download several images from Intuitive Machines’ Odysseus lunar lander, lying on its side on the Moon several hundred miles from the south pole. Five pictures were taken as the lander approached the ground. A sixth, to the right and cropped and reduced to post here, was taken after landing using a fish-eye lens. You can see two of the lander’s legs, and I think the bright spot on the horizon is the Sun.

Odysseus captured this image approximately 35 seconds after pitching over during its approach to the landing site. The camera is on the starboard aft-side of the lander in this phase.

Unfortunately, the lander’s fallen position appears to be limiting the amount of sunlight its solar panels are receiving, and thus engineers expect to shut the spacecraft down sometime today in anticipation of the lunar night. It is very doubtful Odysseus will survive that night and resume operations during the next lunar day.

Ingenuity broke off one blade entirely

Ingenuity with missing blade
Click for original image.

Images using a camera on Perseverance originally designed to look closely at rocks nearby but was found capable of doing distant photography (by engineers running the rover Curiosity), Perseverance has obtained the first good close-up picture of Ingenuity since its last flight, and found that one half of one propeller blade apparently broke off during or at the end of its last flight.

That image is to the right, cropped and sharpened to post here. It was taken on February 25, 2024 by Perseverance’s Supercam camera. A second Supercam image spotted the broken blade about fifty feet away, on the sand.

Why the blade broke off remains unknown. You can see from the tracks on the ground that Ingenuity jumped downhill and sideways after landing, but if the blade had hit the ground while spinning that jump would probably have been more violent. The pictures instead suggest it broke off not from contact with something else but because it broke on its own.

The Ingenuity engineers will of course do some very careful analysis of both pictures, and possibly determine better what happened.

Have modern space engineers forgotten the importance of keeping things simple?

SLIM on its side
The Japanese lander SLIM, on its side.
Click for original image.

In the past four years a number of different companies and nations have attempted eight times to soft land an unmanned lander on the Moon. Sadly, the track record of this new wave of lunar exploration, the first since the 1960s space race, has not been good, and might possibly suggest some basic fundamental design errors, based not so much on engineering but on our modern culture and management. To review:

  • April 11, 2019: Beresheet, built by an Israeli non-profit, failed just before touchdown when a command from the Earth caused its engines to shut down prematurely.
  • November 21, 2019: India’s government-built Vikram lander failed just before touchdown when it began to tumble and ground controllers could not regain control.
  • April 25, 2023: Hakuto-R1, built by the commercial Japanese company Ispace, failed just before touchdown when its attitude sensors mistakenly thought it had reached the surface when it was still three miles high and shut down the engines, causing it to crash.
  • August 20, 2023: Luna-25, built by Russia, crashed on the lunar surface when its engines fired for longer than planned when it began its descent, due to quality control errors during construction.
  • August 23, 2023: India’s succeeded on its second landing attempt, its Vikram lander touching down several hundred miles from the Moon’s south pole and successfully releasing its Pragyan rover. Both operated for about two weeks, until the onset of the harsh lunar night.
  • January 8, 2024: Peregrine, built by the private company Astrobotic, experienced a major fuel leak shortly after launch, making a landing attempt on the Moon impossible. It managed to operate in space for several days, reaching the distance of lunar orbit before coming back to Earth and burning up in the atmosphere.
  • January 25, 2024: SLIM, built by Japan’s space agency JAXA, successfully touched down, though it landed on its side because the nozzle on one of its engines fell off during descent, causing an unbalanced thrust. The spacecraft still functioned, and has now even survived one lunar night, something no one expected.
  • February 23, 2024: Odysseus, built by the private company Intuitive Machines, touched down somewhat softly on the Moon near the south pole, but upon landing then fell over on its side, blocking some antennas so that full communications has so far not been possible (though the spacecraft is functionable and in touch with Earth). This issue has meant that no significant data or images from the lander have so far been transmitted to Earth.

Of these eight attempts, only one mission has been entirely successful, India’s second. Of the seven others, five crashed or failed before even reaching the Moon, while two managed to soft land but with significant problems.
» Read more

NASA high altitude science balloon sets new endurance record

GUSTO's flight path
Click for continuous tracking of GUSTO’s flight path

NASA’s GUSTO high altitude science balloon has now set a new endurance record for the most days of flight of a NASA balloon, flying more than 57 days over the continent of Antarctica at the south pole.

The map to the right shows GUSTO’s entire journey. The blue line was its first phrase of travel, the green its second phase, and the red its present stage.

GUSTO was launched at 1:30 a.m. EST Dec. 31 from the Long Duration Balloon Camp near McMurdo Station, Antarctica. The balloon mission not only broke the flight record but continues its path circumnavigating the South Pole. The stadium-sized zero-pressure scientific balloon and observatory are currently reaching altitudes above 125,000 feet. “The health of the balloon and the stratospheric winds are both contributing to the success of the mission so far,” said Hamilton. “The balloon and balloon systems have been performing beautifully, and we’re seeing no degradation in the performance of the balloon. The winds in the stratosphere have been very favorable and have provided stable conditions for extended flight.”

The previous NASA record was a balloon that it flew in 2012. GUSTO itself is being used to map the Milky Way’s carbon, oxygen, and nitrogen that is found between the stars in gas clouds.

SLIM survives lunar night!

SLIM's view after surviving lunar night
Click for original image.

Japan’s space agency JAXA yesterday announced in a tweet that its SLIM lunar lander had survived the harsh lunar night, and that engineers had resumed communications.

The picture to the right was taken after communications were resumed. It shows SLIM’s view of 885-foot-wide Shioli Crater, the opposite rim the bright ridge in the upper right about a thousand feet away. From this news report:

The mission team received telemetry from SLIM around 5:00 a.m. Eastern (1000 UTC). The temperature of the communication equipment was extremely high, according to JAXA, due to the sun being high over the landing area. Communication was terminated after only a short period of time, JAXA stated.

The SLIM team is however now preparing to conduct observations with SLIM’s multiband spectroscopic camera (MBC) later in the lunar day. MBC is designed to ascertain the composition of the lunar surface and could provide insights into the moon’s history. Sunset over Shioli crater, on the rim of which SLIM landed, will occur Feb. 29.

Surviving the long lunar night is a major achievement. It means Japan’s technology here is capable of doing long missions on the Moon.

LRO locates and photographs Odysseus on lunar surface

Overview map
Click for original LRO image of Odysseus

Scientists using Lunar Reconnaissance Orbiter (LRO) this weekend located and photographed Intuitive Machines’ Odysseus Nova-C lunar lander at a height of 56 miles during its first orbit over the site.

The inset in the map to the right shows the lander, with the white dot marking its landing site, several miles to the south of the planned landing site, as indicated by the yellow dot.

Odysseus came to rest at 80.13 degrees south latitude, 1.44 degrees east longitude, 8,461 feet (2,579 meters) elevation, within a degraded one-kilometer diameter crater where the local terrain is sloped at 12 degrees.

That slope could by itself explain why the lander tipped over and ended up on its side. First, it landed faster than planned. Second, Intuitive Machines designed this Nova-C lander with a relatively tall configuration, which gives it a high center of gravity. Hitting the ground fast and on such a slope could easily have been enough for momentum to tilt it over after touchdown.

Odysseus is on its side, some antennas blocked

It appears the reason communications with Intuitive Machines’ Odysseus lunar lander has been so difficult since its landing yesterdary is that something caused it to fall over so that it is now lying on its side, blocking some of its antennas.

Intuitive Machines initially believed its six-footed lander, Odysseus, was upright after Thursday’s touchdown. But CEO Steve Altemus said Friday the craft “caught a foot in the surface,” falling onto its side and, quite possibly, leaning against a rock. He said it was coming in too fast and may have snapped a leg. “So far, we have quite a bit of operational capability even though we’re tipped over,” he told reporters.

But some antennas were pointed toward the surface, limiting flight controllers’ ability to get data down, Altemus said. The antennas were stationed high on the 14-foot (4.3-meter) lander to facilitate communications at the hilly, cratered and shadowed south polar region.

Its exact location also appears to be several miles from its intended landing site next to the crater Malapart A. Scientists who operate Lunar Reconnaissance Orbiter (LRO) hope orbital images this weekend will identify the spacecraft’s precise location.

The company also revealed that the reason its own laser guidance system would not function — requiring a quick software patch allowing the spacecraft to use a different NASA system — was because “a switch was not flipped before flight.”

Because of this switch in navigation equipment it was decided to cancel the release of the student-built camera probe dubbed Eaglecam that was supposed to be released when Odysseus was about 100 feet above the surface and take images of the landing. Instead, it is now hoped it can be released post landing and get far enough away to look back and capture photos of the lander.

All these problems however do not make this mission a failure. Like Japan’s SLIM lander, the primary goal of this mission was to demonstrate the technology for softlanding an unmanned spacecraft on the Moon. Intuitive Machines has succeeded in this goal. Though obviously some changes must be made to improve this engineering, the success with Odysseus strongly suggests the next mission later this year will do far better.

Mars’ flaky rocks

Mars' flaky rocks
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on February 21, 2024 by the high resolution camera on the Mars rover Curiosity. It once again shows us a very typical many layered rock that the rover has seen routinely in Gale Crater and in the foothills of Mount Sharp.

The long flake tells us many things. First, Mars’ one-third Earth gravity, thin atmosphere, and lack of life allows such flakes to survive. On Earth not only would wind and rain break such delicate forms, plant life would eat away at it as well.

Second, the many thin layers tell us again that Mars’ geological history comprises many cycles and geological events, each of which placed another layer down. The many layers here could actually be evidence of year-by-year events, much like tree-rings detail the drought conditions yearly on Earth.

It will take study on Mars however to find out. These image only tantalize. They cannot give answers.

Webb: Infrared data sees neutron star remaining after 1987 supernova, the nearest in more than 4 centuries

Webb's infrared view of Supernova 1987a
Click for original image.

Using the Webb Space Telescope, astronomers have obtained infrared data that confirms the existence of a neutron star at the location of Supernova 1987a, located in the Large Magellanic Cloud, the nearest such supernova in more than four centuries and the only one visible to the naked eye since the invention of the telescope.

Indirect evidence for the presence of a neutron star at the center of the remnant has been found in the past few years, and observations of much older supernova remnants — such as the Crab Nebula — confirm that neutron stars are found in many supernova remnants. However, no direct evidence of a neutron star in the aftermath of SN 1987A (or any other such recent supernova explosion) had been observed, until now.

…Spectral analysis of the [Webb] results showed a strong signal due to ionized argon from the center of the ejected material that surrounds the original site of SN 1987A. Subsequent observations using Webb’s NIRSpec (Near-Infrared Spectrograph) IFU at shorter wavelengths found even more heavily ionized chemical elements, particularly five times ionized argon (meaning argon atoms that have lost five of their 18 electrons). Such ions require highly energetic photons to form, and those photons have to come from somewhere.

That “somewhere” has to be a neutron star, based on present theories. The image above shows three different Webb views of Supernova 1987a, with the one on the lower right suggesting the existence of a point source at the center of the supernova remnant. In the left image the circular ring of bright spots is an older ring of dust and material that has been lit up by the crash of the explosive material (as indicated in blue at the center) flung out from the star when it went supernova and collapsed into a neutron star. That wave of explosive material took several decades to reach the ring and enflame it.

Odysseus appears to have landed successfully

The privately built Odysseus lunar lander appears to have landed successfully near the south pole of the Moon, though ground controllers have not yet gotten full confirmation that all systems are functioning.

As stated by the mission director, after noting that they were getting a faint signal from the lander’s high gain antenna:

All stations, this is mission director on IM-1. We are evaluating how we can refine that signal and dial in the pointing for our dishes. What we can confirm without a doubt is that our equipment is on the surface of the Moon and we are transmitting. So congratulations IM team. We’ll see how much more we can get from that.

Shortly thereafter the company and NASA ended the live stream.

At this time they do not yet know exactly where the lander touched down, or whether it did so without damage. The signal from the high gain antenna suggests the communications system is intact as well as the antenna, but the lack of further confirmation suggests damage to other instruments, though it is also possible that the signal is not yet firm enough to obtain data from other instruments.

More updates to follow, without doubt.

Frozen lava rapids on Mars

Frozen lava rapids on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 6, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a spot on Mars where lava was squeezed between and around some small peaks as it flowed quickly south, flooding all the low areas in this landscape.

The science team describes the features in the full image as “streamlined”, a description that is literally accurate. As this “stream” of lava rushed past, it “lined” the higher terrain, carving it into tear-dropped shapes.

In the color strip, note the blueish spots at the northern base of the 400-foot-high hill. According to the science team’s explanation [pdf] of the colors in MRO images, “Frost and ice are also relatively blue, but bright, and often concentrated at the poles or on pole-facing slopes.” The picture was taken in summer, so if these bright spots are frost or ice, it suggests they are well shaded from sunlight in those north-facing alcoves. This location is only 9 degrees north of the equator, so finding any near surface ice here is highly unlikely. That frost might exist however is intriguing, to say the least.
» Read more

Live stream of landing of Odysseus on Moon

South Pole of Moon with landing sites

UPDATE: The engineering team has decided to delay the landing attempt by one lunar orbit, pushing it back to 6:24 pm (Eastern). The live stream begins well before then, so that NASA can get in a lot of blather and propaganda, so feel safe waiting to tune in until 6 pm (Eastern).
——————-
Capitalism in space: I have embedded below the NASA live stream for the presently scheduled 5:30 pm (Eastern) landing on the Moon of Intuitive Machines Nova-C lunar lander dubbed Odysseus.

The green dot on the map to the right marks the planned landing site, about 190 miles from the Moon’s south pole. This will be the closest attempted landing so far to that pole, and if successful it will land on the rim of a crater, Malapart A, that is believed to have a permanently shadowed interior.

Odysseus however has no instruments capable of seeing into that interior. Its main mission is engineering, to test the landing technology of Intuitive Machines’ spacecraft. As part of this effort, it will release a small camera probe, dubbed EagleCam, when it is about 100 feet above the surface, which will to take images of that landing. [Update: That probe is unprecedented for another reason: It will be first student-built probe to land on another world, as it was designed and built by a team of students at Embry-Riddle Aeronautical University in Florida.]

If the landing is successful, Odysseus is designed to last until sunset on the Moon, about another two weeks. It carries a variety of NASA and commercial payloads, including a private small optical telescope. More important, it will allow the company to follow through with its manifest of future missions, including a second lunar landing later this year.
» Read more

Why the public continues to lose faith with the medical community

Sudden collapse
One of many sudden public collapses.
Click for full video.

An op-ed today in the New York Post tried to explain why the medical and health community lost the confidence of so much of the public after the COVID epidemic. According to Marc Siegal, a doctor and news pundit (or as described in his bio line at the end of the essay, “a clinical professor of medicine and medical director of Doctor Radio at NYU Langone Health and a Fox News medical analyst”), the distrust was caused by the effort of the Biden administration to force the COVID jab on everyone through mandates while squelching any dissent or discussions of potential risks.

To Siegal, this effort to make believe the jab carried no risks at all was seen from the start as a lie, and has since been proven so. Better to have been honest from the start, Siegal says, so that patients could make up their own minds with all the facts in hand.

The way Siegal couches his language in his op-ed, however, only increases this distrust.
» Read more

Curiosity’s view of Gale Crater from its new heights on Mount Sharp

Low resolution version of panorama
Click for full resolution version of panorama. For the original images, go here, here, and here.

Overview map

Cool image time! The panorama above was created from three pictures taken on Februay 13, 2024 by the left navigation camera on the Mars rover Curiosity (available here, here, and here). It looks to the north, across Gale Crater and its nearest rim, about twenty miles away. The red dotted line indicates the approximate route Curiosity took to get to this point. The yellow lines on the overview map to the right show the approximate area covered by the panorama.

The images were part of the routine mosaics created by both the left and right navigation cameras for helping engineers plot the rover’s future travels. The pictures that look back at the far rim however also provide important atmospheric data. In this case, the haze tells the scientists how much dust is in the atmosphere. It is presently winter in Gale Crater, which also corresponds to the dust storm season. Thus, the view is very hazy.

Curiosity will likely remain at this location for several more weeks, as the science team is about to begin another drilling campaign. Note the large dark area on the cliff face on the right that is also level with the terrace where Curiosity presently sits. The scientists want to get core data of this layer, and they think they are at a good spot to do so.

Tomorrow’s landing of Intuitive Machine’s Odysseus lunar lander

South Pole of Moon with landing sites
Nova-C is Odysseus’s landing spot

NASA has now announced its planned live stream coverage of tomorrow’s landing attempt of Intuitive Machine’s Odysseus lunar lander near the south pole of the Moon.

Intuitive Machines is targeting no earlier than 5:49 p.m. EST Thursday, Feb. 22, to land their Odysseus lunar lander near Malapert A in the South Pole region of the Moon.

Live landing coverage will air on NASA+, NASA Television, the NASA app, and the agency’s website. NASA TV can be streamed on a variety of platforms, including social media. Coverage will include live streaming and blog updates beginning 4:15 p.m., as the landing milestones occur. Upon successful landing, Intuitive Machines and NASA will host a news conference to discuss the mission and science opportunities that lie ahead as the company begins lunar surface operations.

No live stream is of course active yet. When it goes live tomorrow afternoon I will embed the youtube broadcast here on Behind the Black.

If successful, Odysseus will be the first American landing on the Moon since the manned Apollo missions more than a half century ago. It will also mark the first successful lunar landing achieved by a privately-built spacecraft. Companies from Israel, Japan, and the U.S. have already tried and failed.

Martian gullies caused by glacial and water erosion

A gully on the north rim of Niquero Crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 23, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The image shows us the north interior rim of 7-mile-wide Niquero Crater on Mars. From the high to the low points the elevation difference is about 2,500 feet, with a steep downhill slope averaging about 18 degrees. The terrain appears to show several avalanche collapses that pushed lower material out of the way, though at the bottom where that material has been pushed aside there is no obvious large debris pile.

The science team labels this image simply “volatiles and gullies”, a label that carries a host of significant information. These gullies, which were among the earliest found by Mars Global Surveyor in the late 1990s, were the first evidence that the surface of Mars had a lot of near surface ice. It is for this reason that this relatively small crater on Mars has a name. Most craters this small remain unnamed, but the gullies on Niquero’s north slopes required more study, and thus the crater was given a name.

Subsequent orbital imagery has now shown that craters like Niquero, located in latitudes higher than 30 degrees, quite often are filled with glacial debris. In fact, the material that these avalanches pushed aside at the base of the slope is that glacial material, protected by a thin layer of dust and debris. The avalanche essentially disturbed that protected layer, and thus the debris pile (made up mostly of ice) sublimated away when warmed by sunlight. Thus. no big debris pile.

The gullies tend to be on the pole-facing slopes. Scientists believe they are the remnant evidence of ancient glaciers that grew on these slopes because they were protected from sunlight. In subsequent eons, when the climate on Mars changed, those glaciers collapsed, leaving behind the gullies we see now.
» Read more

India proposes to send its own helicopter to Mars

India has now considering adding its own helicopter to its next Mars mission, dubbed the Martian Boundary Layer Explorer (Marble).

While ISRO’s rotorcraft is still in the conceptual stage, the agency envisions a drone that can fly as high as 100 meters in the thin Martian air. Along with the Marble instrument suite, the drone is expected to carry various sensors, including temperature, humidity, pressure, wind speed, electric field, trace species, and dust sensors.

Whether this mission will include a lander, rover, or orbiter as well is very unclear, which suggests strongly the entire mission profile is presently very much undecided as yet.

Alternating dark and light terraces inside Valles Marineris

Overview map

Alternating dark and light layered terraces in Valles Marineris
Click for original image.

Cool image time! The picture to the right, cropped and enhanced to post here, was taken on October 9, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what appear to be the somewhat typical terrain at this location, in a part of the giant Martian canyon Valles Marineris dubbed West Candor Chasma. For example, I featured similar swirls in August 2022 at a place only about six miles to the east, that spot indicated by the green dot on the overview map above. The white dot marks the location of today’s image.

So, what are we looking at? The elevation drop from the high and low points is only about 180 feet, but in that short distance it appears there are more than two dozen visible layers, and those layers form terraces that alternate between bright and dark material.

The shape of the swirls also suggest that a flow of some kind, either water, ice, or wind, moved from the northwest to the southeast, carving these terraces as it descended the stair steps downward. It is also just as likely that we are seeing repeated lava flows going downhill to the southeast, each even laying another layer on top of the preceeding one. And it is also possible that we are looking at a combination of both.

The alternating dark and light layers suggest that each dark layer was an event that put down dark material, such as volcanic dust, that was subsequently covered with light material, with this process repeating itself many times over the eons.

That the floor of this part of Valles Marineris is uniquely covered in this manner is in itself intriguing. Why here, and not elsewhere within the canyon?

The alien surface of Mars

The alien surface of Gediz Vallis
Click for original image.

Overview map
Click for interactive map.

Cool image time! The picture above, brightened slightly to post here, was taken on February 15, 2024 by the right navigation camera on the Mars rover Curiosity. It looks east at the looming cliff face of the mountain Kukenan that the rover has been traveling beside for the last six months. On the overview map to the right the yellow lines indicate roughly the area covered by this picture. The blue dot marks Curiosity’s present position, while the green dot marks its position on February 5, 2024. As you can see, the rover is making slow but steady progress uphill into Gediz Vallis.

This image illustrates the alien landscape of Mars quite beautifully. First, there is absolutely no life in this picture. On Earth you would be hard pressed to find any spot on the surface that doesn’t have at least some plant life.

Second, there is the rocky layered nature of this mountain. When the Curiosity science team first announced its future route plans (the red dotted line) to drive into this canyon back in 2019, the orbital images of these layers from Mars Reconnaissance Orbiter (MRO) had suggested the terrain here would be reminiscent of The Wave in northern Arizona, a smooth series of curved layers smoothed nicely over time by the wind.

As you can see, there is no smoothness here. Instead, every single layer here is infused with broken rock, suggesting that each layer is structurally weak. As erosion exposes each, the layer breaks up, crumbling into the chaos in this picture. The curved nature of the terrain at the bottom of the picture however does suggest that some sort of flow once percolated down this canyon, either liquid water or glacial ice, carving the layers into this curved floor.

1 2 3 4 258