Tag Archives: science

UK names rover for 2020 ExMars mission

The United Kingdom has named its rover for 2020 ExMars mission in honor of Rosalind Franklin, one of the scientists who contributed to the discovery of the helix structure of DNA.

Franklin is best known for her work on the X-ray diffraction images of DNA. Her data was a part of the data used to formulate Crick and Watson’s 1953 hypothesis regarding the structure of DNA. Unpublished drafts of her papers show that she had determined the overall B-form of the DNA helix. Her work supported the hypothesis of Watson and Crick and was published third in the series of three DNA Nature articles. After finishing her portion of the DNA work, Franklin led pioneering work on the tobacco mosaic and polio viruses. Franklin died from ovarian cancer at the age of 37, four years before Crick, Watson and Wilkins were awarded the Nobel Prize in 1962 for their work on DNA.

Though this isn’t entire clear from the press release, it appears that they will refer to the rover as either “Rosalind Franklin” or “Rosalind.”


Sunspot update January 2019: The early solar minimum

As I have done every month since 2011, I am now posting NOAA’s the monthly update of the solar cycle, covering sunspot activity for January 2019. They posted this update on Monday, and I am posting it below, annotated to give it some context.

January 2019 sunspot activity

The graph above has been modified to show the predictions of the solar science community. The green curves show the community’s two original predictions from April 2007, with half the scientists predicting a very strong maximum and half predicting a weak one. The red curve is their revised May 2009 prediction.

January saw a slight uptick in sunspot activity, but the overall activity remains comparable to mid-2008, when the last prolonged solar minimum began. If you go to my October 2018 update, you can see the graph when it included data going back to 2000 and see the entire last minimum.

That last minimum started in the last half of 2007, and lasted until mid-2009, a full two years. If you look at the red line prediction of the solar science community, it appears that they are expecting this coming minimum to last far longer, almost forever. I expect this is not really true, but that they have simply not agreed on a prediction for the next cycle. Some in that solar science community have hypothesized that we are about to enter a grand minimum, with no sunspots for decades and thus no solar maximum. Others do not agree.

Since neither faction really understands the mechanism that causes these sunspot cycles, there is no way now to determine what will happen, until it does so. What we do know from climate data is that the Earth cools when the Sun is inactive. Why remains unclear, though there is at least one theory, with some evidence, that attempts to explain it.

And despite the untrustworthy claims of NOAA and NASA scientists that the last few years have been hot, experience on the ground disputes this. Their data has been adjusted (tampered if one wants to be more blunt) to make it fit their global warming theory. The raw unadjusted data suggests things have instead cooled, which better fits with the brutal winters Americans experienced for the past decade or so.

If the Sun does enter a grand minimum in the coming decades, I suspect it will become increasingly difficult for NOAA and NASA to continue their temperature adjustments and continue claiming things are getting warmer. At a minimum, we will learn something about the Sun and its behavior and its influence on the climate that we never knew before.


Hayabusa-2 to attempt asteroid landing on February 22

JAXA, Japan’s space agency, today announced that Hayabusa-2 will attempt a landing on the asteroid Ryugu on February 22.

The landing was delayed from October because of the unexpected roughness of Ryugu’s surface, which literally has no spot smooth enough and large enough for Hayabusa-2, as planned. This landing will therefore be attempted in one of two places that are almost large enough, but not quite. It thus carries some additional risks.


Chinese cubesat snaps picture of Earth and Moon from deep space

The Moon and Earth

A interplanetary cubesat, Longjiang-2, launched with China’s communications relay satellite that they are using to communicate with Chang’e-4 and Yutu-2 on the far side of the Moon, has successfully taken a picture of both the Moon and Earth, as shown in the picture on the right.

Longjiang-2 is confirming what the MarCo cubesats proved from Mars, that cubesats can do interplanetary work.

And the picture is cool also. This was taken on February 3, when the entire face of the Moon’s far side is facing the Sun, illuminating it all. This timing also meant that the globe of the Earth would be entirely lit.


MarCO interplanetary cubesats likely dead

More than two months after they provided relay communications for the landing of InSight on Mars, and more than a month since any contact has been heard from them, engineers now consider the two MarCO cubesats to likely be dead.

Now well past Mars, the daring twins seem to have reached their limit. It’s been over a month since engineers have heard from MarCO, which followed NASA’s InSight to the Red Planet. At this time, the mission team considers it unlikely they’ll be heard from again.

MarCO, short for Mars Cube One, was the first interplanetary mission to use a class of mini-spacecraft called CubeSats. The MarCOs – nicknamed EVE and WALL-E, after characters from a Pixar film – served as communications relays during InSight’s landing, beaming back data at each stage of its descent to the Martian surface in near-real time, along with InSight’s first image. WALL-E sent back stunning images of Mars as well, while EVE performed some simple radio science.

All of this was achieved with experimental technology that cost a fraction of what most space missions do: $18.5 million provided by NASA’s Jet Propulsion Laboratory in Pasadena, California, which built the CubeSats.

WALL-E was last heard from on Dec. 29; EVE, on Jan. 4. Based on trajectory calculations, WALL-E is currently more than 1 million miles (1.6 million kilometers) past Mars; EVE is farther, almost 2 million miles (3.2 million kilometers) past Mars.

Their loss of contact more than a month after the November landing of InSight actually shows their incredible success. Both MarCO cubesats functions well past Mars, demonstrating that these tiny satellites can do much of the same things bigger satellites costing billions do.


The location for a future Martian colony?

Pit draining into Kasei Valles

Regular readers of this webpage will know that I am a caver, and am fascinated with the pits and caves that have so far been identified on Mars, as illustrated by an essay I wrote only last week.

Some of the cave research I have cited has being led by planetary scientist Glen Cushing of the U.S. Geological Survey. Two weeks ago Dr. Cushing sent me a slew of pictures of caves/pits that he has accumulated over the years, many of which he has not yet been able to highlight in a paper. At least two were images that I had already featured on Behind the Black, here and here.

One pit image however I had never seen. A cropped and reduced close-up is shown on the right, with the full photograph viewable by clicking on the image. In many ways this pit is reminiscent of many pits on Mars. Its northern rim appears to be an overhang several hundred feet deep that might have an underground passage continuing to the north. The southern lip is inviting in that its slope appears to be very accessible for vehicles, meaning this pit/cave might be a good location to build a first colony.

Because of that accessible southern lip, I decided to do more digging about this particular pit. I was quickly able to find the uncaptioned release of complete image by doing a quick search through the image catalog of Mars Reconnaissance Orbiter’s (MRO) high resolution camera. That image, reduced and cropped to post here, is shown below, on the right.
» Read more


The Milky Way is warped?

The uncertainty of science: Distance data of more than 1,300 Cepheid variable stars gathered by the Wide-field Infrared Explorer (WISE) space telescope now suggests to astronomers that the disk of the Milky Way galaxy is warped.

Trying to determine the real shape of our galaxy is like standing in a Sydney garden and trying to determine the shape of Australia. But, for the past 50 years there have been indications that the hydrogen clouds in the Milky Way are warped. The new map shows that the warped Milky Way disc also contains young stars. It confirms that the warped spiral pattern is caused by torque from the spinning of the Milky Way’s massive inner disc of stars.

This research is good and helpful in getting us closer to a real picture of our Milky Way galaxy. However, need I say that this result carries with it a great deal of uncertainty? Or should I let my kind readers outline for me the many aspects of this research that leave me with doubts?

I think I want to do the latter. Where do you think the uncertainties are in this research? What assumptions are they making? Where is their data sparse or weak? Feel free to list them in the comments.


Strange fernlike ridges on Mars

Fernlike ridges on Mars

Cool image time! The two images on the right, cropped, rotated, and reduced in resolution to post here, were both taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO). To see the full resolution version of each, go to the 2009 and 2018 releases.

The 2009 release was a captioned release, whereby scientist Alfred McEwen of the science team provided his explanation of these strange features.

The dark branched features in the floor of Antoniadi Crater look like giant ferns, or fern casts. However, these ferns would be several miles in size and are composed of rough rocky materials.

A more likely hypothesis is that this represents a channel network that now stands in inverted relief. The channels may have been lined or filled by indurated materials, making the channel fill more resistant to erosion by the wind than surrounding materials. After probably billions of years of wind erosion the resistant channels are now relatively high-standing. The material between the branched ridges has a fracture pattern and color similar to deposits elsewhere on Mars that are known to be rich in hydrated minerals such as clays.

These strange fernlike features do not appear to be very common on Mars. In fact, I suspect that while Mars does have many inverted channels like this, the fernlike nature of these particular channels is unique on Mars. They are located on the floor of Antoniadi Crater, a large 240-mile-wide very ancient and eroded crater located in the Martian southern highlands but near the edge down to the northern lowlands.

In seeing the new 2018 image, I was immediately compelled to place it side by side with 2009 image to see if anything had changed in the ensuring near-decade. There are color differences, but I suspect these are mostly caused by different lighting conditions or post-processing differences. Still, the dark center to the crater in the upper left of both images suggests a change in the dust dunes there, with the possibility that some of the dust has been blown from the crater over time. Also, you can see two horizontal tracks cutting across the center of the 2018 image, which I would guess are dust devil tracks, with one more pronounced.

I can imagine some planetary geologists have spent the last few months, since the second image was taken, pouring over both photographs, and have might even located other interesting changes. And if they find no significant changes, that in itself is revealing, as it gives us a sense of the pace at which the Martian surfaces evolves.


InSight’s seismometer now fully operational

The InSight science team has completed the deployment of the spacecraft’s seismometer by the placement of its protective domed shield over it.

The Wind and Thermal Shield helps protect the supersensitive instrument from being shaken by passing winds, which can add “noise” to its data. The dome’s aerodynamic shape causes the wind to press it toward the planet’s surface, ensuring it won’t flip over. A skirt made of chain mail and thermal blankets rings the bottom, allowing it to settle easily over any rocks, though there are few at InSight’s location.

The shield also helps protect the instrument from temperature changes.

With this deployment completed they will next deploy the heat flow package to the surface, where it will begin to drill its probe sixteen feet into the ground.


ULA gets launch contract for Lucy asteroid mission

Capitalism in space: NASA has awarded ULA a $145 million contract to launch the Lucy asteroid mission on its Atlas 5 rocket.

The price is high for such a launch in today’s market, and is even higher than the cost of some recent military launches, which routinely tack on extra requirements that cause the price to rise. I wonder why. Is it because NASA doesn’t care how much it spends? Or is there a political component here, providing a contract to a company that is having trouble winning contracts in the private sector because their price is too high?

It could be that the mission requires things from the launch that add to the cost. The press release mentions that it “includes the launch service and other mission related costs” but does not specify what they are.


The base of Mt Sharp is less compacted than expected

The uncertainty of science: Using data from Curiosity in Gale Crater on Mars, scientists have found that the material making up the lower layers of Mount Sharp is less compacted that they would have expected.

Scientists still aren’t sure how this mountain grew inside of the crater, which has been a longstanding mystery.

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which now makes up the crater’s surface, would have been pressed down. But the new Science paper suggests Mount Sharp’s lower layers have much less compacted than this theory predicts, reigniting the debate about how full the crater once was.

“The lower levels of Mount Sharp are surprisingly porous,” said lead author Kevin Lewis of Johns Hopkins University. “We know the bottom layers of the mountain were buried over time. That compacts them, making them denser. But this finding suggests they weren’t buried by as much material as we thought.”

I can’t help wonder whether we don’t yet really understand the influence of Mars’ lower gravity on geology, and that might explain the porosity.


China’s unsupervised radio antenna in Argentina

A Chinese invasion? A Chinese radio antenna in Argentina, initially proposed as a communications facility for use with China’s space program, operates without any supervision by the Argentinian government and appears to have military links.

Though U.S. government officials are pushing the idea that this facility is being used by China to eavesdrop on foreign satellites, and though China’s space program is without doubt a major arm of its military, I doubt the radio antenna is being put to military use. As the story notes

Tony Beasley, director of the U.S. National Radio Astronomy Observatory, said the station could, in theory, “listen” to other governments’ satellites, potentially picking up sensitive data. But that kind of listening could be done with far less sophisticated equipment. “Anyone can do that. I can do that with a dish in my back yard, basically,” Beasley said. “I don’t know that there’s anything particularly sinister or troubling about any part of China’s space radio network in Argentina.”

It was installed to support China’s effort to send spacecraft to the Moon and Mars, and that is likely its main purpose. China does not wish to be dependent on the U.S.’s Deep Space Network for such interplanetary communications. This facility helps make that independence possible.

At the same time, the fact that China has been allowed to establish a remote facility in another country and operate it with no oversight is definitely an issue of concern. Essentially, China has obtained control over a piece of Argentinian territory, and unless the Argentine government takes action, China can do whatever it wants there. While the antenna itself might not be an issue, the facility itself is.


Measles makes a comeback in the liberal and anti-vaccine northwest

The coming dark age: An outbreak of measles has infected forty people in the Portland region, known for its strong anti-vaccine movement.

In Clark County, 27 of the confirmed cases have been among children 10 or younger, while just one patient was over 18. At least 34 patients were unvaccinated, while local health officials had not verified the immunization status of four patients.

Measles can linger in the air for up to two hours after an infected person has left the area, and the virus is so contagious that nearly everyone who isn’t immunized and is exposed to it will get sick.

The Portland area is known as an anti-vaccination hot spot, and state data show only about 77 percent of Clark County kindergarteners had completed their vaccinations for the 2017-2018 school year, far below the roughly 95 percent of people that health experts say should be vaccinated to create “herd immunity” against a contagious disease like measles.

“It’s pretty simple: You prevent measles outbreak by getting the measles vaccine,” Washington Secretary of Health John Wiesman said in a call with reporters Wednesday. The outbreak could last “weeks to months,” Wiesman said, and health officials expect to see more cases as measles continues to spread to other counties.

I must point out that, in general, the anti-vaccine movement is mainly linked to the liberal and leftist side of the political spectrum, and to my mind is only another indication of the left’s willingness to ignore facts in its loyalty to utopian fantasies. Because of the measles vaccine, measles vanished as a threat to children in the 1960s. It has now returned, and only because of a desire of some to ignore the facts. While there is always a very very tiny risk in taking the vaccine, the benefits so completely outweigh that risk that it makes no sense to refuse vaccination. Yet many in the liberal community do, and the result is that their children are now getting sick, and are posing a risk to others.


The unfinished search for the Hubble constant

The uncertainty of science: Scientists continue to struggle in their still unfinished search for determining the precise expansion rate for the universe, dubbed the Hubble constant in honor of Edwin Hubble, who discovered that expansion.

The problem is, the values obtained from [two different] methods do not agree—a discrepancy cosmologists call “tension.” Calculations from redshift place the figure at about 73 (in units of kilometers per second per megaparsec); the CMB estimates are closer to 68. Most researchers first thought this divergence could be due to errors in measurements (known among astrophysicists as “systematics”). But despite years of investigation, scientists can find no source of error large enough to explain the gap.

I am especially amused by these numbers. Back in 1995 NASA had a big touted press conference to announce that new data from the Hubble Space Telescope had finally determined the exact number for the Hubble constant, 80 (using the standard above). The press went hog wild over this now “certain” conclusion, even though other astronomers disputed it, and offered lower numbers ranging from 30 to 65. Astronomer Allan Sandage of the Carnegie Observatories was especially critical of NASA’s certainty, and was dully ignored by most of the press.

In writing my own article about this result, I was especially struck during my phone interview with Wendy Friedman, the lead scientist for Hubble’s results, by her own certainty. When I noted that her data was very slim, the measurements of only a few stars from one galaxy, she poo-pooed this point. Her result had settled the question!

I didn’t buy her certainty then, and in my article, for The Sciences and entitled most appropriately “The Hubble Inconstant”, made it a point to note Sandage’s doubts. In the end it turns out that Sandage’s proposed number then of between 53 and 65 was a better prediction.

Still, the science for the final number remains unsettled, with two methods coming up with numbers that are a little less than a ten percent different, and no clear explanation for that difference. Isn’t science wonderful?


Parker begins second orbit around Sun

The Parker Solar Probe has completed its first full orbit of the Sun and has begun full science operations.

On Jan. 19, 2019, just 161 days after its launch from Cape Canaveral Air Force Station in Florida, NASA’s Parker Solar Probe completed its first orbit of the Sun, reaching the point in its orbit farthest from our star, called aphelion. The spacecraft has now begun the second of 24 planned orbits, on track for its second perihelion, or closest approach to the Sun, on April 4, 2019.

Parker Solar Probe entered full operational status (known as Phase E) on Jan. 1, with all systems online and operating as designed. The spacecraft has been delivering data from its instruments to Earth via the Deep Space Network, and to date more than 17 gigabits of science data has been downloaded. The full dataset from the first orbit will be downloaded by April.

They have been somewhat tight-lipped about any results from the data already obtained. I suspect it has not yet been analyzed fully, and the scientists are reserving comment until they complete their first science papers and get them published.


Weird Martian fracture feature

Fractured collapse feature on Mars

Cool image time! When I first looked at the high resolution Mars Reconnaissance Orbiter (MRO) image on the right, my immediate reaction was, “What the heck is that?” The image to the right is cropped and reduced, but if you click on it you can see the full image at high resolution.

The fractured terrain appears to be all within a collapse. To my eye it appears that while the overall surface has sunk, the fractures indicate an area where there has been an eruption upward, which after the eruption collapsed again, so that the fractured area remains at the apparent bottom of the collapse sink. I was immediately reminded of Upheaval Dome in Yellowstone National Park, which some geologists believe was formed by a “salt bubble” rising upward to create a salt dome.

A thick layer of salt, formed by the evaporation of ancient landlocked seas, underlies much of southeastern Utah and Canyonlands National Park. When under pressure from thousands of feet of overlying rock, the salt can flow plastically, like ice moving at the bottom of a glacier. In addition, salt is less dense than sandstone. As a result, over millions of years salt can flow up through rock layers as a “salt bubble”, rising to the surface and creating salt domes that deform the surrounding rock.

Context image for fracture feature

The process and materials involved were certainly different on Mars. Nonetheless, it does appear we are looking at an eruptive feature unrelated to molten lava. The context image to the right, showing this feature’s location in Mars’ vast northern lowlands, also shows that it has occurred on terrain that has bulged upwards relative to the surrounding lowlands. Nearby MRO images also show similar bulge/collapse features.

To decipher the geological mystery here, we would also need to know when this happened and whether there ever was a liquid ocean residing on top of it, before, during, or after the eruption. We also do not know well the make-up of the underground materials, including whether any frozen water and salt is present.

To be honest, we really don’t know much. I am sure a planetary scientist studying this feature could fill us in on some of these details, such as information provided by the colors in the color image. Even so, I am sure any good scientist would also admit to unknowns.

To get some real answers, we need to be there. It is as simple as that.


The absolute uncertainty of climate science

Even as the United States is being plunged right now into an epic cold spell (something that has been happening repeatedly for almost all the winters of the past decade), and politicians continue to rant about the coming doom due to global warming, none of the data allows anyone the right to make any claims about the future global climate, in any direction.

Why do I feel so certain I can make this claim of uncertainty? Because the data simply isn’t there. And where we do have it, it has been tampered with so badly it is no longer very trustworthy. This very well documented post by Tony Heller proves this reality, quite thoroughly.

First, until the late 20th century, we simply do not have good reliable climate data for the southern hemisphere. Any statement by anyone claiming to know with certainty what the global temperature was prior to 1978 (when the first Nimbus climate satellite was launched) should be treated with some skepticism. Take a look at all the graphs Heller posts, all from reputable science sources, all confirming my own essay on this subject from 2015. The only regions where temperatures were thoroughly measured prior to satellite data was in the United States, Europe, and Japan. There are scattered data points elsewhere, but not many, with none in the southern oceans. And while we do have a great deal of proxy data that provides some guidance as to the global temperature prior to the space age, strongly suggesting there was a global warm period around the year 1000 AD, and a global cold period around 1600 AD, this data also has a lot of uncertainty, so it is entirely reasonable to express some skepticism about it.

Second, the data in those well-covered regions have been tampered with extensively, and always in a manner that reinforces the theory of global warming. Actual temperature readings have been adjusted everywhere, always to cool the past and warm the present. As Heller notes,
» Read more


New image of Ultima Thule

Ultima Thule

The New Horizons science team today released the newest and highest quality image yet of the Kuiper Belt object Ultima Thule. The image can be seen by clicking on the slightly reduced and cropped to the right.

Obtained with the wide-angle Multicolor Visible Imaging Camera (MVIC) component of New Horizons’ Ralph instrument, this image was taken when the KBO was 4,200 miles (6,700 kilometers) from the spacecraft, at 05:26 UT (12:26 a.m. EST) on Jan. 1 – just seven minutes before closest approach. With an original resolution of 440 feet (135 meters) per pixel, the image was stored in the spacecraft’s data memory and transmitted to Earth on Jan. 18-19. Scientists then sharpened the image to enhance fine detail. (This process – known as deconvolution – also amplifies the graininess of the image when viewed at high contrast.)

The oblique lighting of this image reveals new topographic details along the day/night boundary, or terminator, near the top. These details include numerous small pits up to about 0.4 miles (0.7 kilometers) in diameter. The large circular feature, about 4 miles (7 kilometers) across, on the smaller of the two lobes, also appears to be a deep depression. Not clear is whether these pits are impact craters or features resulting from other processes, such as “collapse pits” or the ancient venting of volatile materials.

They have only begun downloading the best data and images, so expect better images in the future.


Martian glacier with moraine?

Glacier flow on Mars, with moraine

Cool image time! In the past two decades numerous images and studies of the Martian terrain produced by orbiters have shown us landslides, lava flows, water and ice produced flows, and many glacial features, all vaguely familiar but often having components reminding us of the alien nature of the Martian landscape. I have posted many here at Behind the Black. (Just do a search here for the words “Mars flow” and you will have a wealth of cool images and alien geological features to explore.)

The image on the right, rotated, cropped, and reduced to post here, shows another such feature, but this time it is less alien and more resembling a typical Earth glacier, flowing downhill slowly and pushing a moraine of debris before it. The picture was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and was part of the January image release. If you click on the image you can see the complete photograph at full resolution.

The release has no caption, but is titled “Tongue-Shaped Glacier in Centauri Montes,” referring to the largest tongue-shaped flow on the left. This feature, more than any other in the image, resembles closely many glaciers on Earth. It even has an obvious moraine at its head. As the glacial flow pushed downward slowly it gathered a pile of material that eventually began to act almost like a dam.

The location of this feature is intriguing in its own right.
» Read more


Rock from Earth, found on Moon?

The uncertainty of science: Scientists studying rocks brought back by the Apollo 14 lunar mission have concluded that one sample originally came from the Earth, and if so would be the oldest known Earth rock.

It is possible that the sample is not of terrestrial origin, but instead crystallized on the Moon, however, that would require conditions never before inferred from lunar samples. It would require the sample to have formed at tremendous depths, in the lunar mantle, where very different rock compositions are anticipated. Therefore, the simplest interpretation is that the sample came from Earth.

The team’s analyses are providing additional details about the sample’s history. The rock crystallized about 20 kilometers beneath Earth’s surface 4.0-4.1 billion years ago. It was then excavated by one or more large impact events and launched into cis-lunar space. Previous work by the team showed that impacting asteroids at that time were producing craters thousands of kilometers in diameter on Earth, sufficiently large to bring material from those depths to the surface. Once the sample reached the lunar surface, it was affected by several other impact events, one of which partially melted it 3.9 billion years ago, and which probably buried it beneath the surface. The sample is therefore a relic of an intense period of bombardment that shaped the Solar System during the first billion years. After that period, the Moon was affected by smaller and less frequent impact events. The final impact event to affect this sample occurred about 26 million years ago, when an impacting asteroid hit the Moon, producing the small 340 meter-diameter Cone Crater, and excavating the sample back onto the lunar surface where astronauts collected it almost exactly 48 years ago (January 31–February 6, 1971).

The scientists also admit that their conclusion is controversial and will be disputed. If true, however, it suggests that there is significant material on the Moon from the early Earth that can provide a window into parts our planet’s history that are presently inaccessible.


Oblique close-up image of Ceres

Ceres from Dawn

The Dawn science team has released an oblique close-up image of Ceres, taken in May 2018 before the Dawn mission ended. To the right is a reduced resolution version, with the full resolution photograph viewable if you click on it.

Dawn captured this view on May 19, 2018. The image shows the limb of Ceres at about 270E, 30N looking south. The spatial resolution is about 200 feet (60 meters) per pixel in the nearest parts of the image. The impact crater to the right (only partially visible) is Ninsar, named after a Sumerian goddess of plants and vegetation. It is about 25 miles (40 kilometers) in diameter.

Bright seeps running down the interior rims of several craters are visible. To my eye, the image also suggests an overall softness to Ceres. Its surface is like a sandbox, easily reshaped significantly by each impact.


Orbital images of Bennu

Close-up of Bennu's southern hemisphere

The OSIRIS-REx science team has released two new images of Bennu’s southern hemisphere, taken from orbit. The image on the right is a cropped section of the highest resolution version of a montage of two images. Click on the image to see the entire two-image montage.

These two OpNav images of Bennu’s southern hemisphere, which each have an exposure time of about 1.4 milliseconds, were captured Jan. 17 from a distance of about one mile (1.6 km). They have been cropped and the contrast has been adjusted to better reveal surface features. The large boulder – fully visible in the middle of the left frame and in partial shadow in lower portion of right frame – is about 165 feet (50 meters) across.

The cropped section to the right shows that large boulder in the middle of the frame.

I’m sorry, but when I look at this rubble-pile asteroid I cannot help but think of the cat-litter clumps I remove from our cats’ litter box. The only fundamental difference is that the grains in cat litter are made to be a uniform size, while at Bennu the grains are much coarser and not uniform. Nonetheless, this asteroid is a clump of many grains, just like those cat litter clumps, and will likely crumple easily into a cloud of grains if smacked just hard enough.

This knowledge is actually very critical, as Bennu is a potentially dangerous asteroid with an orbit that might have it impact the Earth in about two hundred years.


New impact on the Martian south polar cap

New impact on Mars' south pole

Cool image time! The image to the right, cropped to post here, was taken on October 5, 2018 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows a recent meteorite impact that occurred sometime between July and September of 2018 on the Martian polar cap . If you click on the image you can see the entire photograph. As noted in the captioned press release,

It’s notable because it occurred in the seasonal southern ice cap, and has apparently punched through it, creating a two-toned blast pattern.

The impact hit on the ice layer, and the tones of the blast pattern tell us the sequence. When an impactor hits the ground, there is a tremendous amount of force like an explosion. The larger, lighter-colored blast pattern could be the result of scouring by winds from the impact shockwave. The darker-colored inner blast pattern is because the impactor penetrated the thin ice layer, excavated the dark sand underneath, and threw it out in all directions on top of the layer.

Location on edge of south polar cap

It is not known yet the size of this meteorite. The location is shown in the overview image to the right, with the impact indicated by the white dot. The black circle in the middle of the image is the south pole itself, an area where MRO’s orbit does not allow imagery. This location, on the edge of the Martian polar cap, is helpful to scientists because it has excavated material from below the cap, providing them a peek into previously unseen the geology there. Had the impact been farther south, on the thicker cap, that hidden material below the cap would likely not have been exposed.

The cap itself is made up of both ice and frozen carbon dioxide, though the CO2 is mostly seen as frost during winter months that evaporates during the summer.


Planetary rover update: January 22, 2019

Summary: Curiosity begins journey off of Vera Rubin Ridge. Opportunity’s silence is now more than seven months long, with new dust storms arriving. Yutu-2 begins roving the Moon’s far side.

Before providing today’s update, I have decided to provide links to all the updates that have taken place since I provided a full list in my February 8, 2018 update. As I noted then, this allows my new readers to catch up and have a better understanding of where each rover is, where each is heading, and what fascinating things they have seen in the past few years.

These updates began when I decided to figure out the overall context of Curiosity’s travels, which resulted in my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. Then, when Curiosity started to travel through the fascinating and rough Murray Buttes terrain in the summer of 2016, I stated to post regular updates. To understand the press releases from NASA on the rover’s discoveries it is really necessary to understand the larger picture, which is what these updates provide. Soon, I added Opportunity to the updates, with the larger context of its recent travels along the rim of Endeavour Crater explained in my May 15, 2017 rover update.

Now an update of what has happened since November!
» Read more


No Planet X needed

The uncertainty of science: New computer models now suggest that the orbits of the known Kuiper Belt objects can be explained without the need for the theorized large Planet X.

The weirdly clustered orbits of some far-flung bodies in our solar system can be explained without invoking a big, undiscovered “Planet Nine,” a new study suggests.

The shepherding gravitational pull could come from many fellow trans-Neptunian objects (TNOs) rather than a single massive world, according to the research.

“If you remove Planet Nine from the model, and instead allow for lots of small objects scattered across a wide area, collective attractions between those objects could just as easily account for the eccentric orbits we see in some TNOs,” study lead author Antranik Sefilian, a doctoral student in the Department of Applied Mathematics and Theoretical Physics at Cambridge University in England, said in a statement.

When you think about it, having many many scattered small objects in the Kuiper Belt makes much more sense than a few giant planets. Out there, it would be difficult for large objects to coalesce from the solar system’s initial accretion disk. The density of material would be too low. However, you might get a lot of small objects from that disk, which once formed would be too far apart to accrete into larger planets.

The use of the term “Planet Nine” by these scientists however is somewhat annoying, and that has less to do with Pluto and more to do with the general understanding of what it means to be a planet that has been evolving in the past two decades. There are clearly more than eight planets known in the solar system now. The large moons of the gas giants as well as the larger dwarf planets, such as Ceres, have been shown to have all the complex features of planets. And fundamentally, they are large enough to be spheres, not misshaped asteroids.


Is the pole of the Milky Way’s central black hole pointing directly at us?

The uncertainty of science: New data obtained using a constellation of Earth-based telescopes, working as a unit, strongly suggests that the pole of the Milky Way7s supermassive central black hole, dubbed Sagittarius A* (pronounced A-star), is pointing directly at us.

The high quality of the unscattered image has allowed the team to constrain theoretical models for the gas around Sgr A*. The bulk of the radio emission is coming from a mere 300 milllionth of a degree, and the source has a symmetrical morphology. “This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Sara Issaoun, graduate student at the Radboud University Nijmegen in the Netherlands, who leads the work and has tested several computer models against the data. “However, that would make Sgr A* an exception compared to other radio emitting black holes. The alternative could be that the radio jet is pointing almost at us”.

The German astronomer Heino Falcke, Professor of Radio Astronomy at Radboud University and PhD supervisor of Issaoun, calls this statement very unusual, but he also no longer rules it out. Last year, Falcke would have considered this a contrived model, but recently the GRAVITY team came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique. “Maybe this is true after all”, concludes Falcke, “and we are looking at this beast from a very special vantage point.”

If this is true, it might explain why Sgr A* is generally observed to be one of the quietest central supermassive black holes known. Compared to many others, its flux of emissions is far less.


Democratic House threatens Webb cancellation

The House, now controlled by the Democratic Party, has threatened cancellation of the James Webb Space Telescope should that project, already overbudget by $8 billion and 9 years behind schedule, fail to meet its present budget limits.

[The House budget] bill includes the full $304.6 million requested for JWST in 2019, but the report accompanying the bill offered harsh language, and a warning, regarding the space telescope given the cost overruns and schedule delays announced last year.

“There is profound disappointment with both NASA and its contractors regarding mismanagement, complete lack of careful oversight, and overall poor basic workmanship on JWST,” the report states. “NASA and its commercial partners seem to believe that congressional funding for this project and other development efforts is an entitlement, unaffected by failures to stay on schedule or within budget.”

The bill does increase the cost cap for JWST by about $800 million, to a little more than $8.8 billion, to address the latest overruns. “NASA should strictly adhere to this cap or, under this agreement, JWST will have to find cost savings or cancel the mission,” the report states.

I really don’t take this Congressional threat seriously. Our Congress is universally known in Washington as an easy mark for big money. The technique is called a buy-in, where you initially lowball the budget of your project, get it started, and then when it goes overbudget, Congress routinely shovels out the money to continue. Webb is a classic and maybe the worst example of this, but this game has been going on since the 1960s, with no sense that the Congresses of the last half century have had any problem with it.

And I especially don’t take it seriously from the Democrats who, even more than the Republicans, like to shovel money out.

The bankrupt unwillingness of both parties to care for the interest of the country for the past few decades in this matter explains why we have federal debt exceeding $20 trillion.


Scientists calculate length of Saturn’s day

Using Cassini data of the rotation rate of Saturn’s rings, scientists have calculated what they think is the precise rotation rate of the planet itself.

Using new data from NASA’s Cassini spacecraft, researchers believe they have solved a longstanding mystery of solar system science: the length of a day on Saturn. It’s 10 hours, 33 minutes and 38 seconds. The figure has eluded planetary scientists for decades, because the gas giant has no solid surface with landmarks to track as it rotates, and it has an unusual magnetic field that hides the planet’s rotation rate.

The answer, it turned out, was hidden in the rings. During Cassini’s orbits of Saturn, instruments examined the icy, rocky rings in unprecedented detail. Christopher Mankovich, a graduate student in astronomy and astrophysics at UC Santa Cruz, used the data to study wave patterns within the rings. His work determined that the rings respond to vibrations within the planet itself, acting similarly to the seismometers used to measure movement caused by earthquakes. The interior of Saturn vibrates at frequencies that cause variations in its gravitational field. The rings, in turn, detect those movements in the field.

…Mankovich’s research, published Jan. 17 by Astrophysical Journal, describes how he developed models of Saturn’s internal structure that would match the rings’ waves. That allowed him to track the movements of the interior of the planet – and thus, its rotation. [emphasis mine]

This work certainly seems ingenious, clever, and somewhat convincing, but I must admit I laughed when I read their estimate of the day length above, to the second. That is ridiculous. Their margin of error cannot possibly be that small. Mankovich has for sure narrowed the uncertainty in the length of Saturn’s day, but forgive me if I remain skeptical as to the precision claimed.


Volcanic vent between Arsia and Pavonis Monsa

volcanic vent on Mars

Cool image time. The photo on the right, rotated, cropped, and reduced to post here, was taken in September by the high resolution camera of Mars Reconnaissance Orbiter (MRO) and was part of the November image release. Click on the image to see the entire photograph at full resolution.

The uncaptioned release dubs this feature as “Small Eruptive Vents South of Pavonis Mons.” In truth, these vent pits are located almost exactly the same distance from both Pavonis Mons, the middle volcano in the line of three giant Martian volcanoes, and Arsia Mons, the southernmost of the three.

The image is interesting for several reasons. First, note the bulge surrounding the vent, making this look almost like a miniature volcano all its own. In fact, that is probably what it is. When it was active that bulge was likely caused by that activity, though it is hard to say whether the bulge was caused by flow coming from out of the vent, or by pressure from below pushing upward to cause the ground to rise. It could even have been a combination of both.

To my eye, most of the bulge was probably caused from pressure from below pushing upward. The edge of the bulge does not look like the leading edge of a lava flow. Still, this probably happened so long ago that Martian wind erosion and dust could have obscured that leading edge.

That this is old is indicated by the dunelike ripples inside the large pit, and the pond of trapped dust in the smaller pit. Because of the thinness of the Martian atmosphere it takes time to gather that much dust, during which time no eruptions have occurred.

One more interesting detail: If you look at the pits in full resolution, you will see that, based on the asymmetrical wind patterns between the west and east rims, the prevailing winds here are from the west. Located as it is just to the east of the gigantic saddle between Arsia and Pavonis Mons, this wind orientation makes sense, as a saddle between mountains tends to concentrate the wind, much like a narrowed section in a river produces faster water flow and rapids. As for why the wind blows mostly from the west, my guess (which should not be taken very seriously) is that it is probably caused by the same meteorological phenomenon that causes this generally on Earth, the planet’s rotation.


Summer has finally arrived on Titan’s northern hemisphere

The uncertainty of science: In a review of Cassini data from 2016, scientists have finally identified rain in the northern polar regions of Titan, signaling the onset of summer there.

The whole Titan community has been looking forward to seeing clouds and rains on Titan’s north pole, indicating the start of the northern summer, but despite what the climate models had predicted, we weren’t even seeing any clouds,” said Rajani Dhingra, a doctoral student in physics at the University of Idaho in Moscow, and lead author of the new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union. “People called it the curious case of missing clouds.”

Dhingra and her colleagues identified a reflective feature near Titan’s north pole on an image taken June 7, 2016, by Cassini’s near-infrared instrument, the Visual and Infrared Mapping Spectrometer. The reflective feature covered approximately 46,332 square miles, roughly half the size of the Great Lakes, and did not appear on images from previous and subsequent Cassini passes.

Analyses of the short-term reflective feature suggested it likely resulted from sunlight reflecting off a wet surface. The study attributes the reflection to a methane rainfall event, followed by a probable period of evaporation. “It’s like looking at a sunlit wet sidewalk,” Dhingra said.

Though the data somewhat matches their climate models, those models did not predict the rain’s late arrival, which means they need revision. I guarantee that this will not be the last revision, though without an orbiter at Saturn it will probably be decades before we have new data to make that possible.

1 2 3 4 5 162