The mystery of Tabby’s Star deepens

The uncertainty of science: New data from Kepler has made it even more difficult for scientists to explain the strange fluctuations and dimming of Tabby’s Star.

KIC 8462852, as it is more properly known, flickers so erratically that one astronomer has speculated that nothing other than a massive extraterrestrial construction project could explain its weird behaviour. A further look showed it has been fading for a century. Now, fresh analysis suggests the star has also dimmed more rapidly over the past four years – only adding to the enigma. “It seems that every time someone looks at the star, it gets weirder and weirder,” says Benjamin Montet at the California Institute of Technology, who led the study.

There are as yet no natural explanations for the star’s dimming.

Poll shows Hawaiians strongly favor TMT

A new poll shows that by a 2 to 1 margin Hawaiians are in favor of building the Thirty Meter Telescope (TMT).

  • 89 percent of Hawaii Island residents agree there should be a way for science and Hawaiian culture to co-exist on Maunakea
  • 76 percent of Hawaii Island residents agree that TMT will help create good paying jobs and economic and educational benefits for those living on Hawaii Island
  • 70 percent of Hawaii Island residents agree that failure to move forward with TMT will hurt educational opportunities for Hawaii Island children with the termination of TMT’s annual $1 million contribution to the THINK Fund and workforce pipeline program
  • 69 percent of Hawaii Island residents agree that TMT has followed a lengthy approval process, so work should proceed

Based on what I’ve seen for the past forty years, this poll will mean nothing. The poll also found that the native Hawaiian population was much less supportive, with only 46 percent in support of the project and 45 percent opposed. And since the Democratic Party that runs Hawaii is a party that cares almost exclusively for the concerns of oppressed minorities over that of the non-native majority, you can bet they will do what the native population wants. The telescope will never get built in Hawaii, and the consortium building TMT had better face this reality and find another location.

Astrobiologists meet to better their search for exoplanet life

The uncertainty of science: Astrobiologists are meeting this week in Seattle to discuss and refine their methods for detecting astrobiology on exoplanets.

The Seattle meeting aims to compile a working list of biosignature gases and their chemical properties. The information will feed into how astronomers analyse data from NASA’s James Webb Space Telescope, slated for launch in 2018. The telescope will be able to look at only a handful of habitable planets, but it will provide the first detailed glimpse of what gases surround which world, says Nikole Lewis, an astronomer at the Space Telescope Science Institute in Baltimore, Maryland.

No single gas is likely to be a slam-dunk indicator of alien life. But Domagal-Goldman hopes that the workshop will produce a framework for understanding where scientists could trip themselves up. “We don’t want to have a great press release,” he says, “and then a week later have egg on everybody’s faces.”

A few years ago I was told by one astronomer that the field’s biggest and most exciting area of research in the coming decades will be the effort to study the thousands exoplanets they only just discovered. I agree. The Webb telescope might have been built to study cosmology, but the data it will produce about exoplanets will be much more real and less uncertain, thus making it more compelling and convincing.

“They can’t be real.”

The uncertainty of science: Astronomers have now detected and measured a new class of large but very dim galaxy that previously was not expected to exist.

‘Ultradiffuse’ galaxies came to attention only last year, after Pieter van Dokkum of Yale University in New Haven, Connecticut, and Roberto Abraham of the University of Toronto in Canada built an array of sensitive telephoto lenses named Dragonfly. The astronomers and their colleagues observed the Coma galaxy cluster 101 megaparsecs (330 million light years) away and detected 47 faint smudges.

“They can’t be real,” van Dokkum recalls thinking when he first saw the galaxies on his laptop computer. But their distribution in space matched that of the cluster’s other galaxies, indicating that they were true members. Since then, hundreds more of these galaxies have turned up in the Coma cluster and elsewhere.

Ultradiffuse galaxies are large like the Milky Way — which is much bigger than most — but they glow as dimly as mere dwarf galaxies. It’s as though a city as big as London emitted as little light as Kalamazoo, Michigan.

More significantly, they have now found that these dim galaxies can be as big and as massive as the biggest bright galaxies, suggesting that, surprise!, there are a lot more stars and mass hidden out there and unseen than anyone had previously predicted.

WIMP detector finds nothing

The uncertainty of science: A detector buried a mile underground so that it could only detect the predicted Weak Interacting Massive Particles (WIMP) thought to comprise dark matter has found nothing

Dark matter is thought to account for more than four-fifths of the mass in the universe. Scientists are confident of its existence because the effects of its gravity can be seen in the rotation of galaxies and in the way light bends as it travels through the universe, but experiments have yet to make direct contact with a dark matter particle. The LUX experiment was designed to look for weakly interacting massive particles, or WIMPs, the leading theoretical candidate for a dark matter particle. If the WIMP idea is correct, billions of these particles pass through your hand every second, and also through the Earth and everything on it. But because WIMPs interact so weakly with ordinary matter, this ghostly traverse goes entirely unnoticed.

…“We worked hard and stayed vigilant over more than a year and a half to keep the detector running in optimal conditions and maximize useful data time,” said Simon Fiorucci, a physicist at Berkeley Lab and Science Coordination Manager for the experiment. “The result is unambiguous data we can be proud of and a timely result in this very competitive field—even if it is not the positive detection we were all hoping for.”

This null result, which has its own uncertainties that require confirmation by another experimental test, places significant constraints on the possible nature of the dark matter particle, assuming it exists. And if confirmed, this result makes the hunt to explain the gravitational data of galaxy rotation, something that has been confirmed repeatedly, far more difficult.

Nearby exoplanets have Earthlike atmospheres

Worlds without end: New data from Hubble suggests that two rocky exoplanets only 40 light years away have atmospheres more similar to Earth’s than to that of gas giants.

Specifically, they discovered that the exoplanets TRAPPIST-1b and TRAPPIST-1c, approximately 40 light-years away, are unlikely to have puffy, hydrogen-dominated atmospheres usually found on gaseous worlds. “The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.”

The actual make-up of these atmospheres remains unknown. Also, the central star, a red dwarf, is estimated to be about a half billion years old. Both the star’s make-up — red dwarfs are not as rich in elements as a G-type sun — and age do not provide much margin for the development of life.

Nonetheless, the new data increases again the likelihood that we will eventually find habitable worlds orbiting other stars, and we will find them in large numbers.

TMT likely to abandon Hawaii

Officials from the consortium that is building the Thirty Meter Telescope (TMT) have revealed that they are looking very seriously at alternative locations.

Officials behind the proposed Thirty Meter Telescope (TMT) are considering new locations for the $1.4bn facility, and expect to decide whether to opt for a new site early next year. The TMT is due to be built on Hawaii’s Mauna Kea mountain but, following protests from local residents, its building permit was revoked last December by the state’s Supreme Court. New locations that are being considered include Baja California in Mexico, the Canary Islands and Chile, as well as locations in India and China.

They claim that Hawaii is still their first choice, but if they don’t see any progress by summer in the permitting process, I expect them to tell Hawaii to go to hell (though not in those words) and pick somewhere else.

A planet with three suns

Astronomers, using instruments on the Very Large Telescope in Chile, have discovered an exoplanet that orbits around three suns.

Located about 340 light years from Earth in the constellation Centaurus, HD 131399Ab is believed to be about 16 million years old, making it one of the youngest exoplanets discovered to date, and one of very few directly imaged planets. With a temperature of 850 Kelvin (about 1,070 degrees Fahrenheit or 580 degrees Celsius) and weighing in at an estimated four Jupiter masses, it is also one of the coldest and least massive directly imaged exoplanets.

“HD 131399Ab is one of the few exoplanets that have been directly imaged, and it’s the first one in such an interesting dynamical configuration,” said Daniel Apai, an assistant professor of Astronomy and Planetary Sciences who leads a research group dedicated to finding and observing exoplanets at the UA.

“For about half of the planet’s orbit, which lasts 550 Earth-years, three stars are visible in the sky, the fainter two always much closer together, and changing in apparent separation from the brightest star throughout the year,” said Kevin Wagner, a first-year PhD student in Apai’s research group and the paper’s first author, who discovered HD 131399Ab. “For much of the planet’s year the stars appear close together, giving it a familiar night-side and day-side with a unique triple-sunset and sunrise each day. As the planet orbits and the stars grow further apart each day, they reach a point where the setting of one coincides with the rising of the other – at which point the planet is in near-constant daytime for about one-quarter of its orbit, or roughly 140 Earth-years.”

The orbit of the planet remains somewhat uncertain, and thus it might not be stable.

New Hubble image of Crab Nebula

Crab Nebula

Cool image time! Scientists have released a new Hubble Space Telescope image taken of the innermost regions of the Crab Nebula, the remains of a supernova explosion that took place a thousand years ago in 1054.

On the right is a reduced resolution version of this new image. I have also cropped it to focus on the nebula’s center, where the pulsar is located. The circular concentric rings are exactly what they appear to be, ripples of energy spreading out from the pulsar. Back in 2002 Hubble took a series of images of the Crab Nebula over several days, which scientists then assembled into a movie showing these waves as they emanated out from the nebula’s center.

My only complaint with this beautiful new image is that they did not take a longer series of new exposures to create a longer movie, to better show the actual daily changes that the nebula undergoes. It seemed obvious to do then, and obvious to do now. Yet, it hasn’t happened.

The image download page for today’s release is here.

Hubble images Jupiter and its aurora

Jupiter and its aurora

Cool image time! In anticipation of the arrival of Juno in orbit around Jupiter on July 4, scientists have released a spectacular image of Jupiter and its aurora, taken by the Hubble Space Telescope. The image on the right has been reduced slightly to fit on the webpage.

The main focus of the imaging is the aurora.

To highlight changes in the auroras, Hubble is observing Jupiter almost daily for several months. Using this series of far-ultraviolet images from Hubble’s Space Telescope Imaging Spectrograph, it is possible for scientists to create videos that demonstrate the movement of the vivid auroras, which cover areas bigger than the Earth.

Not only are the auroras huge in size, they are also hundreds of times more energetic than auroras on Earth. And, unlike those on Earth, they never cease. While on Earth the most intense auroras are caused by solar storms — when charged particles rain down on the upper atmosphere, excite gases, and cause them to glow red, green, and purple — Jupiter has an additional source for its auroras.

The strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind, but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanos.

I have embedded below the fold one of the videos of the aurora, taken over time by Hubble. Quite amazing.
» Read more

Moon discovered orbiting Kuiper Belt Object Makemake

Worlds without end: Astronomers have discovered a moon orbiting Makemake, the fouth largest object in the Kuiper Belt.

A nearly edge-on orbital configuration helped it evade detection, placing it deep within the glare of the icy dwarf during a substantial fraction of its orbit. Makemake is one of the largest and brightest known Kuiper Belt Objects (KBOs), second only to Pluto. The moon is likely less than 100 miles wide while its parent dwarf planet is about 870 miles across. Discovered in 2005, Makemake is shaped like football and sheathed in frozen methane.

Tracking this moon’s orbit will help astronomers get a better understanding of Makemake itself, whose oblong shape has baffled them since its discovery.

Newly discovered asteroid quasi-moon of Earth

A newly discovered asteroid has a solar orbit that makes it Earth’s constant companion.

As it orbits the sun, this new asteroid, designated 2016 HO3, appears to circle around Earth as well. It is too distant to be considered a true satellite of our planet, but it is the best and most stable example to date of a near-Earth companion, or “quasi-satellite.”

“Since 2016 HO3 loops around our planet, but never ventures very far away as we both go around the sun, we refer to it as a quasi-satellite of Earth,” said Paul Chodas, manager of NASA’s Center for Near-Earth Object (NEO) Studies at the Jet Propulsion Laboratory in Pasadena, California. “One other asteroid — 2003 YN107 — followed a similar orbital pattern for a while over 10 years ago, but it has since departed our vicinity. This new asteroid is much more locked onto us. Our calculations indicate 2016 HO3 has been a stable quasi-satellite of Earth for almost a century, and it will continue to follow this pattern as Earth’s companion for centuries to come.”

The asteroid is thought to be between 120 to 300 feet across.

National Science Foundation considers shuttering Arecibo

Faced with tight budgets, the National Science Foundation (NSF) is considering several options for the future operation of the Arecibo Observatory, the world’s largest single radio telescope dish, including its complete removal.

[T]he NSF could mothball the site, shutting it down in such a way that it could restart (sometime in the future). Or it could dismantle the telescope altogether and restore the area to its natural state, as required by law if the agency fully divests itself of the observatory and closes it. Previous studies have said such a process could cost around $100 million—more than a decade’s worth of its current funding for telescope operations. Jim Ulvestad, director of the NSF Division of Astronomical Sciences, says the agency is still investigating, not concluding. “No alternative has been selected at this juncture,” he says. And much consideration will go into the final financial decision, whatever it may be. Some outside the agency see writing on the wall. “NSF is dead serious about offloading Arecibo funding to someone else—anyone else,” says Ellen Howell, a former staff scientist at Arecibo and now a faculty member at the Lunar and Planetary Laboratory (LPL) in Tucson, Arizona.

The article spends a lot of time talking about how wonderful Arecibo is, but never tells us how many astronomers actually demand to use it. Is it oversubscribed, like Hubble, where five times the number of astronomers request time than can be handled, or does it often sit unused because not enough astronomers require its use? NSF and the government do not have unlimited funds, and need to focus their spending where the demand is. If Arecibo is not in demand, then they are wise to consider closing it, or handing it off to someone who wants it.

LISA Pathfinder proves space-based gravity wave detection technology

Engineers have announced that the gravity wave detection technology being tested in orbit by Europe’s LISA Pathfinder works.

To show that the necessary sensitivity is possible, LISA Pathfinder measures the distance between two masses, both of which are inside the spacecraft. “We’ve shrunk the arm of a large gravitational wave antenna to 35 centimeters so we could show it works properly,” Paul McNamara, LISA Pathfinder project scientist, told the press conference.

LISA Pathfinder was launched in December 2015 to a spot 1.5 million kilometers from Earth. When its test masses where first released to float free in February, “the relief was unbelievable,” McNamara says. Science operations began on 1 March and on that first day the team was able to measure distance variations between the masses much smaller than LISA Pathfinder’s mission requirements, Stefano Vitale, the mission’s principle investigator, told reporters. After a month, the variations were even smaller, “very close to [eLISA] requirements,” he says.

They now hope to launch an array of at least three such spacecraft by the mid-2030s.

Titan over Saturn’s rings

Titan over Saturn's rings

Cool image time! The picture on the right, taken on January 26, 2016 by Cassini and reduced and cropped to show here, captures Titan above Saturn’s rings, which are themselves partly obscured by the shadow of Saturn (unseen on the right) that falls across them.

Make sure you go to look at the full image. This is the kind of vista that artists in the 1950s imagined we’d see once we began to explore the solar system.

Hawaii turns down requests to remove TMT hearings officer

The state of Hawaii has decided to not replace the hearings officer in charge of the new permitting process for the Thirty Meter Telescope, despite a request by TMT to remove her.

There are different reasons for wanting to replace her. Telescope opponents raise conflict-of-interest concerns over her paid family membership to the Imiloa Astronomy Center. The university takes issue with her mediating another matter involving the Manoa campus. The nonprofit telescope company says replacing her with an alternate would avoid further delay.

“With due respect and consideration to the parties’ various interests and reasons for asking the board to replace Judge Amano, the board cannot and will not sidestep its own administrative responsibility to exercise judgment and common sense regarding whether the selection process up until now has objectively appeared to be fair,” the order said. “Common sense must prevail.”

The situation is a strange one. Despite the fact that the judge would likely rule fairly, TMT wanted her removed because they expect their opponents to eventually dispute any favorable decision she makes because of her link to the astronomy center. By refusing to remove her, the state is actually taking the side of the telescope’s opponents, since their main tactic is delay.

I hope TMT’s builders are making serious plans for finding an alternative site. I do not expect them to ever get permission to build in Hawaii.

New data challenges consensus on galaxy formation

The uncertainty of science: A new study has found that the accepted consensus for the formation of large elliptical galaxies does not work, and that, rather than forming from the merger of smaller spiral galaxies, ellipticals formed in place from the material at hand.

From the press release [pdf].

“We started from the data, available in complete form only for the closer galaxies and in incomplete form for the more distant ones, and we filled the ‘gaps’ by interpreting and extending the data based on a scenario we devised” comments Mancuso. The analysis also took into account the phenomenon of gravitational lensing, which allows us to observe very distant galaxies belonging to ancient cosmic epochs.

In this “direct” manner (i.e., model-independent) the SISSA group obtained an image of the evolution of galaxies even in very ancient epochs (close, in a cosmic timescale, to the epoch of reionization). This reconstruction demonstrates that elliptical galaxies cannot have formed through the merging of other galaxies, “simply because there wasn’t enough time to accumulate the large quantity of stars seen in these galaxies through these processes”, comments Mancuso. “This means that the formation of elliptical galaxies occurs through internal, in situ processes of star formation.

The important take-away of this result is that it shows that the present theory of galaxy formation, where smaller spiral galaxies merge to form larger elliptical galaxies, does not fit the data. And if a theory does not fit the data, it must be abandoned.

Jupiter exoplanet around baby star

The uncertainty of science: Astronomers have discovered a Jupiter-class exoplanet orbiting a very young star, something their models of planetary formation told them shouldn’t happen.

“For decades, conventional wisdom held that large Jupiter-mass planets take a minimum of 10 million years to form,” said Christopher Johns-Krull, the lead author of a new study about the planet, CI Tau b, that will be published in The Astrophysical Journal. “That’s been called into question over the past decade, and many new ideas have been offered, but the bottom line is that we need to identify a number of newly formed planets around young stars if we hope to fully understand planet formation.”

CI Tau b is at least eight times larger than Jupiter and orbits a 2 million-year-old star about 450 light years from Earth in the constellation Taurus.

In other words, a planet that, according to the present models for planetary formation, supposedly needs 10 million years to form is orbiting a star only 2 million years old. In other words, the models are wrong. We simply don’t know enough yet about planetary formation to create any reliable models.

TMT calls for removal of official supervising permit process

The University of Hawaii has filed a motion to have the hearing officer in charge of the new permitting process for the Thirty Meter Telescope (TMT) removed.

What the lawyers for TMT appear to be doing is trying to prevent further delaying tactics by those opposing the telescope. Their motion describes these delaying tactics, which involve questioning the objectivity of various officials involved, but doing it piecemeal in order to slow the permitting process down as much as possible. The officer in question has membership in an astronomy center, and though the anti-TMT forces have not yet questioned this, TMT lawyers want to act now to remove that possibility later.

Once again, I think TMT officials are spinning their wheels. Hawaii will never give them permission to build TMT. Read the ten-point plan of Hawaii’s governor for protecting Mauna Kea and you will agree. They should move the telescope to a more friendly location as soon as possible.

ESO signs giant telescope contract

The European Southern Observatory today signed the contract to begin building the European Extremely Large Telescope (E-ELT).

The contract covers the design, manufacture, transport, construction, on-site assembly and verification of the dome and telescope structure. With an approximate value of 400 million euros, it is the largest contract ever awarded by ESO and the largest contract ever in ground-based astronomy. The E-ELT dome and telescope structure will take telescope engineering into new territory. The contract includes not only the enormous 85-metre-diameter rotating dome, with a total mass of around 5000 tonnes, but also the telescope mounting and tube structure, with a total moving mass of more than 3000 tonnes. Both of these structures are by far the largest ever built for an optical/infrared telescope and dwarf all existing ones. The dome is almost 80 metres high and its footprint is comparable in area to a football pitch.

The E-ELT is being built on Cerro Armazones, a 3000-metre peak about 20 kilometres from ESO’s Paranal Observatory. The access road and leveling of the summit have already been completed and work on the dome is expected to start on site in 2017.

E-ELT will have a main mirror 39 meters in width, about 9 meters bigger than the stalled TMT project.

TMT permitting process about to begin anew

The retired Hawaiian judge who will supervise the new permitting process for the Thirty Meter Telescope held a prelminary meeting on Monday to discuss scheduling and procedual matters.

The Hawaiian authorities have been slow-walking this new permiting process, which the telescope already completed according to law years ago. I say TMT should just leave Hawaii so its citizens can enjoy their barren mountain and the lack of jobs and wealth it will bring them.

New analysis says it ain’t aliens at strange star

The uncertainty of science: A new analysis of old star data has concluded that KIC 8462852, also known Tabby’s Star and subject to random fluctuations that no scientist can explain, has not dimmed by 20% in the past century.

This reduces the chances that the fluctuations are caused by the slow accumulating construction of a Dyson sphere by an alien civilization, as some have proposed, but it still does nothing to explain the star’s random changes in brightness.

Exoplanets found nearby

Worlds without end: Astronomers have identified three planets close to the habitable zone on a star only 39 light years away.

A year on the two inner planets lasts just a couple of days. Data on the third world are sparse; it could take anywhere between 4.5 and 72.8 days to trek around its sun. The star, designated 2MASS J23062928−0502285, is roughly the size of Jupiter — about one-tenth as wide as our sun — and about 3,200 degrees Celsius cooler than the sun. Such runts make up about 15 percent of the stars in the galaxy, though astronomers had not found planets around one before. All three planets were discovered as periodic dips in starlight in late 2015 using TRAPPIST, a telescope at La Silla Observatory in Chile.

If anything does crawl or grow on these worlds, it bathes in mostly infrared light. The innermost planets receive several times as much energy from their star as Earth does from our sun, which technically puts them outside the star’s habitable zone (SN: 4/30/16, p. 36). But the planets are huddled up so close to the star that gravity might keep them from spinning, creating a temperate zone along the line where day turns to night, the researchers suggest.

Hubble discovers moon circling Kuiper belt object

Worlds without end: Hubble has spotted a small moon orbiting the distant Kuiper Belt object Makemake.

The moon — provisionally designated S/2015 (136472) 1 and nicknamed MK 2 — is more than 1,300 times fainter than Makemake. MK 2 was seen approximately 13,000 miles from the dwarf planet, and its diameter is estimated to be 100 miles across. Makemake is 870 miles wide. The dwarf planet, discovered in 2005, is named for a creation deity of the Rapa Nui people of Easter Island.

New Hubble image of Red Rectangle

The Red Rectangle

Cool image time! I think the Red Rectangle might be my favorite planetary nebula. The new image on the right, taken by the Hubble Space Telescope, is the best yet of this weirdly shaped object. And it continues to suggest, as I noted whimsically in an article about it for Sky & Telescope back in November 2014, that this is a web being spin by the universe’s largest spider.

1 37 38 39 40 41 72