Hakuto-R1 lands on Moon but ceases communications at touchdown

Lunar map showing Hakuto-R1's landing spot
Hakuto-R1’s planned landing site is in Atlas Crater.

According to the Hakuto-R1 engineering team, the lander provided full data and maintained communications right up until touchdown, but at that point they lost contact with the spacecraft.

The loss of data at landing suggests something went wrong at touchdown. That they were able to maintain contact until then, and the data appeared correct, suggests that the spacecraft descended properly into Atlas Crater, but then touched down on some rough ground that either caused it to topple, or damaged it on contact.

This remains speculation however. We will have to wait for a full update from Ispace.

This was a engineering mission to test the company’s spacecraft design and its ability to operate a lunar mission. The failure at landing means it achieved about 8 to 9 of its 10 milestones. How this final failure will effect its next mission as well as its contract with NASA remains unclear.

Review of InSight data allows scientists to further refine their model of Mars’ interior

Using archive data from the now defunct InSight Mars lander, especially two seismic detections that came from the planet’s far side, scientists now believe that Mars’ central core is significantly different than Earth’s, being entirely liquid and made up of much lighter materials than expected.

To determine these differences, the team tracked the progression of two distant seismic events on Mars, one caused by a marsquake and the other by a large impact, and detected waves that traveled through the planet’s core. By comparing the time it took those waves to travel through Mars compared to waves that stayed in the mantle, and combining this information with other seismic and geophysical measurements, the team estimated the density and compressibility of the material the waves traveled through. The researchers’ results indicated that Mars most likely has a completely liquid core, unlike Earth’s combination of a liquid outer core and solid inner core.

Additionally, the team inferred details about the core’s chemical composition, such as the surprisingly large amount of light elements (elements with low atomic numbers)—namely sulfur and oxygen—present in Mars’ innermost layer. The team’s findings suggested that a fifth of the core’s weight is made up of those elements. This high percentage differs sharply from the comparatively lesser weight proportion of light elements in Earth’s core, indicating that Mars’ core is far less dense and more compressible than Earth’s core, a difference that points to different conditions of formation for the two planets.

These differences, if confirmed, would certainly affect the way Mars’ surface evolved over the eons, and might help explain its giant volcanoes as well as the planet’s lack of a magnetic field.

The results however remain uncertain, because InSight provided only one seismometer on Mars. To better triangulate the data will require more than one, in the future.

China once again outlines its lunar base plans; Russia out? Project delayed?

China/Russian Lunar base roadmap
The original Chinese-Russian lunar base plan, from June 2021.

In outlining today China’s long term plans for establishing a manned lunar base near the south pole of the Moon, the project’s chief designer, Wu Weiren, revealed several changes in the program, almost all of which were indicated by what he did not say than what he did.

The graph to the right was released when this program was first announced in June 2021. At that time the plan was announced as a partnership of China and Russia, and was aiming to begin intermittent manned operations on the Moon in 2036.

According to Wu’s presentation today however, China apparently no longer considers Russia to be a full equal partner. It appears instead that Russia was mentioned as part of Wu’s effort to encourage many other countries to join the project. As reported by China’s state-run press:

During Tuesday’s event, Wu also highlighted the cooperation initiative for countries, organizations, and scientists worldwide to join the construction of the research station. In 2021, the China National Space Administration (CNSA) released a partnership guideline for the International Lunar Research Station.

That the state-run press made no mention of Russia in this description indicates strongly China’s devaluation of Russia’s contribution. This devaluation is not a surprise. As I noted in 2021,

[B]ased on Russia’s recent track record in the past two decades for promised space projects, we have no guarantee they will fly as scheduled, or even fly at all.

Since then Russia invaded the Ukraine and has suffered economically because of it. Its own first contribution to this partnership, Luna-25, has been delayed repeatedly, with its present launch now scheduled for July. It was always obvious that Russia — in its present state — could not match China, nor was it likely it would meet its promised targets.

Wu’s presentation also indicated that the third phase, when intermittent manned operations will begin, has been delayed from 2036 to 2040.

Overall, however, the Chinese plan remains stable and rational, and is likely to be carried out with reasonable success, based on how the country proposed and then achieved construction of its space station. The station was built essentially as described by the plan, with only a delay of a few years.

Ingenuity snaps picture of Perseverance during its 51st flight on Mars

Ingenuity's view on 51st flight, April 22, 2023
Click for original image.

Overview map
Click for interactive map.

On April 22, 2023 the Mars helicopter Ingenuity completed its fifty-first flight on Mars, flying 617 feet west for about 136 seconds at an altitude of about 39 feet. As has been routine for the past dozen or so flights, all these numbers were slightly higher than the flight plan, probably because the helicopter took extra time to find a good landing spot.

The panorama above, cropped, reduced, and enhanced to post here, was taken by Ingenuity about halfway through the flight. Unlike the black and white images that the helicopter takes looking straight down, this color image looks at an oblique angle of 22 degrees below the horizon. The colors are not corrected. The view looks east, looking backwards into Belva Crater. You can see Perseverance on the left, with its tracks cutting across the frame. Belva is filled with ripple dunes.

The blue dot on the overview map to the right marks Perseverance’s present position. The green dot marks Ingenuity’s take-off point, with the green line indicating the approximate flight path.

The climb into Gediz Vallis

Panorama on Sol 3808, April 24, 2023
Click for original image.

Overview map
Click for interactive map.

After three months traversing the geological layer that the scientists have dubbed the Marker Band, Curiosity has now climbed higher, passing what I dubbed the Hill of Pillows on the west so that it is now in a position to return to its planned route up Mount Sharp, as indicated by the red dotted line in the overview map to the right and the panorama above.

The panorama, cropped, reduced, and annotated to post here, was created on April 24, 2023 using 31 images from the rover’s right navigation camera. The yellow lines on the overview map indicate approximately the area covered, with the blue dot marking Curiosity’s present position.

For scale, the top of Kukenan is about 5,200 feet above Curiosity, while the top of Chenapua is only about 115 feet higher. The white flanks are about 3,200 feet above Kukenan, and are about 4 to 5 miles away.

Looking back, the rim of Gale Crater on the far left of the panorama is about 20 miles away.

Al-Amal snaps first close-up images of Martian moon Deimos

Deimos with Mars in the background
Click for full movie.

During its first close fly-by of the Martian moon Deimos on March 10, 2023, the United Arab Emirates Mars orbiter Al-Amal (“Hope” in English) obtained the first close-up images of the moon.

The picture to the right show Deimos with Mars in the background. The full set of images, compiled into a movie, can be seen by clicking on the image.

The results were outlined by science lead Hessa Al Matroushi at a conference today.

During the 10 March fly-by, the mission team used all three onboard instruments to take readings spanning from the infrared to the extreme ultraviolet. The relatively flat spectrum the scientists saw is suggestive of the type of material seen on Mars’s surface, rather than the carbon-rich rock often found in asteroids, suggesting that Deimos was formed from the same material the planet. “If there were carbon or organics, we would see spikes in specific wavelengths,” she says.

These results probably put an end to the theory that Mars’ moons came from the asteroid belt. Instead, they either formed when the planet did, or were thrown free and settled into orbit after a very large impact, such as the ones that created either the Hellas or Argyre basins, both of which happened several billion years ago and thus provide ample time for the space environment to smooth the moon’s surface and add some craters.

The strange terrain in the basement of Mars

Strange terrain inside Hellas Basin
Click for original image.

I’ve posted numerous cool images about the weird and alien terrain found routinely in what is Mars’ death valley, Hellas Basin. Today is no different. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 23, 2023 to fill a gap in the schedule of the high resolution camera on Mars Reconnaissance Orbiter (MRO). Thus, it isn’t linked to any particular research, and its target was chosen by the camera science team almost at random.

What it shows is a strangely striated plain interspersed with rounded mesas and partly buried craters. The shape of the striations suggests that they were formed from wind blowing consistently from the north. This hypothesis is reinforced by the material that seems piled up at the base of the two bottom mesas, as if it was blown there.

Is ice or lava however?
» Read more

A spray of small impacts melting Martian ice?

A spray of small impacts melting Martian ice?

Cool image time! The picture to the right, cropped and reduced to post here, was taken on March 2, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and was taken not as part of any specific research request but by the MRO science team to fill a gap in its schedule while also maintaining the camera’s temperature. Sometimes these somewhat random times show nothing of interest. Sometimes they are fascinating, as in this case.

The photo shows what appear to be a spray of small impacts on an easily melted surface. Imagine spraying hot molten lava on a sheet of ice. Instead of creating a crater with an upraised rim, on impact each droplet would quickly melt a hole.

Did these small impacts all occur at the same time? My guess is yes, based on the overview map below.
» Read more

Jumbled floor of ancient Martian channel

Jumbled floor of ancient Martian channel
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 2, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

At first glance I thought I was looking at a variety of eroding glacial flows. I was completely wrong. This terrain is located on the floor of 900-mile-long Ares Vallis, thought to have been carved eons ago by some flow, either liquid catastrophic floods or glacial ice, but is now located in the very dry equatorial regions of Mars.

Then what caused these meandering ridges? The overview map below, plus the wider view of MRO’s context camera, provides us more data but little illumination. In fact, both leave us more questions and mysteries.
» Read more

The peeling floor of a crater in the southern cratered highlands

Overview map
From Argyre Basin to Hellas Basin is about 7,000 miles.

The peeling floor of a crater in the southern cratered highlands of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 25, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists labeled this image “Crater fill”, but that hardly suffices. First, the fill appears at first glance to resemble peeling paint. At closer inspection, rather than peeling paint we have instead a collection of ridges vaguely resembling cave rimstone dams that either enclose a blob-shaped region or simply meander about until they reach the crater’s interior rim.

The crater interior itself appears largely filled with material so that its rims are subdued. The location, as indicated by that black dot near the center of the overview map above, marks the location at 49 degrees south latitude, in the middle of the cratered southern highlands of Mars where many craters have strangely eroded interiors.

What makes this crater however more puzzling is that none of the surrounding nearby craters look like this. A context camera image taken March 23, 2019 shows that while some of the nearby craters have what appears to be glacial material in their interiors, none exhibit these meandering ridges. This crater stands unique, for reasons that are utterly unknown.

Are these ridges a manifestation of the glacial material filling the crater? Or are they bedrock sticking up through that glacial debris? Your guess is as good as mine.

Ingenuity in close-up after two years on Mars

Ingenuity in close-up after two years on Mars
Click for original image, with more information about it here.

With the Mars rover Perseverance now only about seventy-five feet away from the helicopter Ingenuity, the closest the two robots have been on Mars since Ingenuity was deployed in April 2021, the science team used Perseverance’s high resolution camera to take a new close up of the helicopter.

That picture, reduced and sharpened to post here, is to the right. From the caption:

Small diodes (visible more clearly in this image of helicopter) appear as small protrusions on the top of the helicopter’s solar panel. The panel and the two 4-foot (1.2-meter) counter-rotating rotors have accumulated a fine coating of dust. The metalized insulating film covering the exterior of the helicopter’s fuselage appears to be intact. Ingenuity’s color, 13-megapixel, horizon-facing terrain camera can be seen at the center-bottom of the fuselage.

This close-up is important to determine the overall state of the helicopter after two years on Mars. The engineering team that operates it does not know how much longer Ingenuity can last, so any data on its condition is extremely helpful.

That fine coat of dust on the panel and the rotors tells us that even flight and fast-rotating motion is not enough to keep such things clean on Mars. Thus we learn that there is likely no quick solution to the accumulation of dust on solar panels on Mars.

Perseverance catches up with Ingenuity

Ingenuity as seen by Perseverance
Click for original image.

Overview map
Click for interactive map.

The photo above, cropped, enhanced, and annotated to post here, was taken on April 16, 2023 by the left navigation camera on the Mars rover Perseverance, and looks almost due west at the rim of Jezero Crater and the gap in that rim where the delta on which the rover presently travels poured through sometime in the distant past.

Near the center of the picture can be seen the helicopter Ingenuity, sitting where it landed after its fiftieth flight.

The overview map to the right provides the context. Ingenuity is the green dot, Perseverance the blue dot. The yellow lines indicate the approximate area covered by the picture. The red dotted line marks the planned route for Perseverance. Note how the rover has followed Ingenuity’s recent flight path almost precisely, moving to the north away from that red dotted line.

Ingenuity’s 51st flight is presently scheduled for tomorrow. The plan is to go about 600 feet to the west, landing approximately at the black dot.

The very icy high northern latitudes of Mars

Pedestal crater on Mars
Click for full image.

Today’s cool image to me illustrates how the presence of near surface ice in the high latitudes of the northern lowland plains of Mars helps to produce a very strange and alien terrain.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a typical example of what the scientists have dubbed a “pedestal crater,” where the crater ends up higher than the surrounding terrain because the impact had packed the ground and made it more resistant to erosion.

This theory however does not explain entirely what we see here. That apron mesa surrounding the crater also resembles the kind of splash field that is created when an impact occurs in less dense ice-rich ground. Note too the soft stippled nature of the ground. Wind erosion is not the sole cause of change here.
» Read more

Ingenuity completes its 50th flight on Mars

Present location of Perseverance and Ingenuity on Mars
Click for interactive map.

The Ingenuity team yesterday announced that the Mars helicopter has successfully completed its 50th flight on Mars on April 13, 2023, flying 1,057.09 feet (322.2 meters) in 145.7 seconds, while setting a new altitude record of 59 feet. The green dot marks its new location on the overview map to the right, with the blue dot marking Perseverance.

Built with many off-the-shelf components, such as smartphone processors and cameras, Ingenuity is now 23 Earth months and 45 flights beyond its expected lifetime. The rotorcraft has flown for over 89 minutes and more than 7.1 miles (11.6 kilometers). “When we first flew, we thought we would be incredibly lucky to eke out five flights,” said Teddy Tzanetos, Ingenuity team lead at JPL. “We have exceeded our expected cumulative flight time since our technology demonstration wrapped by 1,250% and expected distance flown by 2,214%.”

The helicopter is beginning to show signs of age, with its engineering team recognizing that its life could end at any time, especially because it now has to fly more often to keep ahead of Perseverance, while also keeping within communications range.

The helicopter however is now giving us clues as to where the Perseverance science team wants to send the rover. Notice how its path has shifted north away from its planned route (along the red dotted line) to travel just below the rim of Belva Crater, following Ingenuity. The helicopter team is thus providing the rover team some specific additional information about the ground ahead, aiding in planning travel.

Lucy snaps its first pictures of four of the Trojan asteroids it will visit

Lucy's first look at four Trojan asteroid targets
Click for original movie.

Lucy's route through the solar system
Lucy’s route through the solar system

Though still many millions of miles away and really nothing more than tiny dots moving across the field of stars, the science team for the asteroid probe Lucy have used the probe to take its first pictures of four of the eight Trojan asteroids it will visit during its travels through the solar system, as shown on the map to the right. The dots along its path show where Lucy will fly past asteroids, some of which are binaries.

The image at the top is a screen capture from a very short movie created from all of the images Lucy took of each asteroid. If you click on the picture you will see that movie. As I say, at this distance, more than 330 million miles away, the asteroids are nothing more than dots. The short films of each were obtained by pictures taken over periods from two to 10 hours long, depending on the asteroid.

These asteriods are all in the L4 Trojans, the first that Lucy will visit from ’27 to ’28.

Curiosity gets a software update that will speed its travels and better protect its wheels

Panorama on March 27, 2023 (Sol 3781)
Click for full resolution panorama. The original images can be found here, here, here, here, and here.

Engineers this week completed a major software update on the Mars rover Curiosity that, among many other improvements, will allow it to travel more quickly across the rocky Martian surface but at the same time better protect its damaged wheels.

The team also wants to maintain the health of Curiosity’s aluminum wheels, which began showing signs of broken treads in 2013. When engineers realized that sharp rocks were chipping away at the treads, they came up with an algorithm to improve traction and reduce wheel wear by adjusting the rover’s speed depending on the rocks it’s rolling over.

The new software goes further by introducing two new mobility commands that reduce the amount of steering Curiosity needs to do while driving in an arc toward a specific waypoint. With less steering required, the team can reach the drive target quicker and decrease the wear that inherently comes with steering. “That ability was actually dreamed up during the Spirit and Opportunity days,” Denison said. “It was a ‘nice to have’ they decided not to implement.”

The software will also make it possible for Curiosity to travel more without the help of humans on Earth, which will also speed its travels up Mount Sharp, on ground that is getting increasingly rough, as shown in the mosaic above of navigation images from March 27th.

A pyramid on Mars

A pyramid on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and reduced to post here, was taken on January 21, 2023 by the high resolution camera of Mars Reconnaissance Orbiter (MRO). It shows what the scientists label a “pyramidal mound”, which is I think understating the point somewhat.

This pyramid is almost perfectly square, with two perpendicular ridgelines rising from its corners to meet perfectly at the pyramid’s peak. A similar pyramid mound in the Cydonia region, where the so-called “Face on Mars” was found, caused endless absurd speculations in the 1990s of past Martian civilizations, all of which burst into nothingness when good high resolution images were finally obtained in the 2000s.

But what caused this very symmetrical natural feature?
» Read more

Triple crater on Mars

Triple crater on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on January 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists have labeled simply as a “triple crater,” a very apt description.

What caused this? The most obvious explanation is the arrival almost simultaneously of three pieces. As this asteroid or comet entered the thin Martian atmosphere as a single object, that atmosphere was thick enough to break it into three parts but not enough to destroy it entirely. When it hit the ground, the top piece hit first, with the center and bottom pieces following in sequence, thus partly obscuring the previous hits.

The smaller surrounding craters could either be additional pieces from the bolide, or secondary impacts from ejecta thrown out at impact.
» Read more

SpaceX announces it will be providing a webcast for Starship’s first orbital flight

Starship/Superheavy flight plan for first orbital flight
Click for original image.

SpaceX today revealed the details for its live stream of the first orbital launch of Superheavy/Starship, now targeting a launch date around April 21, 2023, depending on when the FAA issues the launch license.

A live webcast of the flight test will begin ~45 minutes before liftoff. As is the case with all developmental testing, this schedule is dynamic and likely to change, so be sure to stay tuned to our social media channels for updates.

I will embed that live stream here on Behind the Black. Stay tuned for more information.

The flight plan is shown above. The website also provides a detailed timeline. If launch manages to pass through Max-Q and get to stage separation, Superheavy will do a flip to do a soft targeted landing in the Gulf of Mexico. Starship will continue into orbit, and then fire its engines to return to Earth to do a soft targeted landing in the Pacific northeast of the Big Island of Hawaii.

That is the plan. Much can go wrong along the way, considering Superheavy has never flown once, no less with Starship stacked on top. Furthermore, Starship has never flown in its present iteration. Previous suborbital tests were using much earlier prototypes vastly different that this prototype, #24 in the series.

Regardless whether all goes perfectly or some things fail, the launch will be a success because it will provide SpaceX data for future test flights, which are waiting in the wings.

Weird surface cracking in the Martian northern lowland plains

Weird surface cracks on Mars

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on January 15, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The picture was simply labeled “Channel-like feature”, which hardly describes this strange terrain.

Apparently a mantle of surface material has covered and filled an ancient east-west channel. That surface material however has since cracked along the edges of that channel as well along its length. The cracks suggest that the material in the channel is moving downhill slowly, cracking along the cliff walls while also being pulled apart to form the north-south cracks.

My regular readers will I think be able to guess what is going on here, but if you can’t, the overview map below will help explain this.
» Read more

Exploring the cratered southern highlands of Mars, part 4

Overview map

Gullies in Asimov Crater
Click for full image.

Today is the last part in our four part exploration of the cratered southern highlands of Mars, begun last week. (For the early parts, go here-Part #1, here-Part #2, and here-Part #3.) Though there is no need, new readers should read the first three parts first, in order to get the larger perspective of this final post.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 20, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the eastern main gully descending down into a pit that sits in the north center of 52-mile-wide Asimov Crater, as shown in the inset on the overview map above. (For an MRO high resolution of the western gullies into this pit, see this January 2019 cool image post.)
» Read more

The Earth hangs above the Moon

The Earth hangs above the Moon

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken by Lunar Reconnaissance Orbiter (LRO) on December 10, 2015 and released by the LRO team this week. From the caption:

LRO slewed to the east as it passed over the northwest rim (-8.536°N, 251.028°E, 82 km altitude) of the Orientale basin and snapped this spectacular Earth-Moon sequence with the NAC and WAC [cameras]. Tropical Cyclone Bohale is visible in the center of the image. MODIS (onboard the NASA Aqua satellite) imaged the same storm 3 hours after LRO.

The NAC and WAC images of the Earth were projected using a Point-Perspective projection to recreate the view one would see from the LRO spacecraft while taking the NAC image. Due to the relatively slow speed of the spacecraft slew, many NAC framelets of the Earth were acquired. All these WAC frames were oversampled and averaged, enabling a “super-resolution” color image (115 pixels across!), which was then combined with the 4000-pixel-wide NAC image.

…[For the Earth:] North is to the left, Antarctica to the right, Australia at the top, and Africa at the bottom

NAC and WAC are names of two different LRO cameras, one of which captured the Earth in high resolution color while the other captured the Moon. The two images were then combined, superimposing the Earth at the right size onto the second lunar image.

As noted in the caption, this view is as LRO sees the Earth from Lunar orbit, while taking a slewed oblique image of the Moon. It however is not how things would look if you were standing on the surface of the Moon. For one, the photo is zoomed in to get details on the lunar surface, making the Earth appear much larger.

For another, the image is taken 82 kilometers or 51 miles above the Moon. This higher altitude changes the position of the Earth relative to the Moon, making it appear farther from the horizon.

To a person standing in Orientale basin at 8 degrees south latitude (near the equator), but also near the edge of the visible near side of the Moon, the Earth would likely be very close to the horizon, but much smaller. To get a comparable view of the Earth, the person would likely need to use binoculars.

Orientale basin is mostly on the far side of the Moon, though it was known to exist before the space age because ground-based telescopes could see it on the edge of the visible face. It was only with the first lunar orbiters was the basin imaged from directly above, revealing its large size and distinct concentric rings forming its several circular rims.

At this location, the Earth would essentially always remain at approximately the same spot in the sky, though its illuminated face would wax and wane, like the Moon’s does, during the Moon’s twenty-eight day-long day.

Exploring the cratered southern highlands of Mars, part 3

Overview map

Pit and surface in crater
Click for original image.

This is the third part of this week’s series taking a look at some of the strange features in the southern cratered highlands of Mars. In the first part I posted a beautiful image of what appears to be a crater filled to the brim with glacial ice, surrounded by an ice sheet plain. In part two we took a look at the interior of Rabe Crater, which though very nearby does not appear to have obvious glacial features within it at all. What it has instead are deep open air pits and a lot of sand dunes.

Today’s image to the right, cropped, reduced, and sharpened to post here, takes us to the interior of an unnamed 45-mile-wide crater only about 70 miles north of Rabe. The black dot in the inset on overview map above indicates the photo’s location. The picture was taken on January 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Like Rabe, this crater also has many large open-air pits. In the picture one pit, near the lower center of the picture, is surrounded by soft-looking mounds and a strangely swirling textured and uneven terrain that makes up the majority of the crater’s floor.

This picture might help explain what we saw in Rabe. The textured terrain in this unnamed crater could easily be ice-impregnated and now hardened sand dunes. The pit could be where that impregnated ice has sublimated away, leaving behind the dust from those ancient dunes which then forms new sand dunes. In Rabe, the crater floor above its pits looks very similar to this swirling textured surface, suggesting the same process is going on there.

What strengthens this explanation is the many other craters nearby, all indicated by red dots in the overview map above, that also have pits or distorted crater floors. Their proximity suggests that there is an underground ice layer in this region, always at about the same elevation, and each crater impact exposed it. With time that exposed ice, no longer pure but filled with material from the impacts, sublimated partly away, producing the pits as well as ample sand to form sand dunes.

April 6, 2023 Quick space links

Courtesy of BtB’s stringer Jay.

  • China invites Brazil to participate in its lunar base project
  • There is no indication Brazil accepted the offer. The offer took place during a meeting between officials of the Brazil Space Agency and one of China’s pseudo-companies, China Great Wall Industry Corporation (which according to Jay “is the international launch service subsidiary” for China). Thus, this could be an effort by that pseudo-company to gain launch access to Brazil’s recently reactivated Alcântara spaceport.

 

Exploring the cratered southern highlands of Mars, part 2

Overview map

Dune-bedrock contact in Rabe Crater
Click for original image.

Our travels in the cratered southern highlands of Mars continues. Today we visit 67-mile-wide Rabe Crater, as indicated on the overview map above. The picture to the right, cropped and reduced to post here, was taken on January 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

Rabe Crater is significant for several reasons. First, it was one of the first places on Mars where sand dunes were identified, by one of the Viking orbiters in the late 1970s [pdf]. Second, the pits and sand in its interior, are unusual and puzzling. The inset on the overview map provides a closeup look at the crater. The yellow mound in the central south of the crater floor is all dunes, which are surrounded by the pit with steep cliffs more than a 1,000 feet high.
» Read more

Exploring the cratered southern highlands of Mars, part 1

Overview map of southern cratered highlands of Mars

Glacial filled crater
Click for original image.

Today and for the next three days the cool images that I will post from Mars will explore a region that I have not covered very much in depth, the cratered southern highlands between the giant basins Argyre and Hellas. The map above is an overview of this 7,000-mile-long region, all of which is inside the 30 to 60 degree south latitude band where scientists have found much evidence of buried glaciers. In this region the bulk of that evidence is most obvious inside craters.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on December 21, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a typical example of the kind of glacial feature found. The white cross on the map marks its location, west of the Hellespontus Mountains that form the western rim of Hellas Basin.

Scientists have dubbed this feature concentric crater fill, a purposely vague term because — though it looks like glacial fill — until there is data to confirm it the scientists would quite properly rather not commit themselves. The concentric rings suggest multiple layers, each of which likely marks a different climate cycle in Mars’ geological history.

In this case the glacier features also appear to cover the entire plain surrounding the crater as well as its rim. The small crater to the west is similar, and both give the appearance that the ice sheet that covers them came after the impact, draping itself over everything, with the craters only visible because the ice sheet sags within their interiors.

More crazy features from the cratered highlands to come.

The outermost edge of Mars’ north polar icecap

The outermost edge of Mars' north polar icecap
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 4, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the terminating cliffs of the north pole ice cap of Mars, dubbed Rupes Tenius on this side of the icecap.

At this point the elevation difference of the icecap’s edge from top to bottom is not significant, only about 1,500 feet or so, though this is a very rough estimate. As with all other images of the ice cape’s edge, there are many many layers visible, all indicating a different cycle in the climate history of Mars as its rotational tilt swings from about 11 degrees to 60 degrees over eons.

Moreover, at this point there is likely not that much difference between the terrain on top and the terrain below. Both will be mixed ice and dust and coarse rocks, though the percentages will be shifting towards less ice as we go down.
» Read more

A journey into Martian chaos

Overview map of Aram Chaos

With today’s cool image, we shall begin with the overview map, and drill our way down until we get a close look at another example of truly alien Martian terrain, with only a hint of similarity to comparable geology on Earth.

The overview map to the right shows us Aram Chaos, an ancient 170-mile-wide impact crater that has gone through such complex geology that it is difficult, maybe impossible, to unravel it based on data obtained from orbit. As I wrote in a detailed December 2020 post describing the confusing geology of this crater,

The floor of Aram Chaos is a place of great puzzlement to planetary geologists. The geology there is incredibly complex, and includes chaos terrain overlain by several sedimentary layers of sulfate minerals. The chaos terrain is most obvious in the southern part of the crater’s floor. The flat areas near the eastern center are those overlaying sedimentary layers.

When we zoom into the white box we can see a good example of this complexity.
» Read more

Ingenuity completes 49th flight on Mars

Overview map
Click for interactive map.

The Ingenuity team today posted the official flight totals for the Mars helicopter’s 49th flight, which took place yesterday.

The helicopter flew 925 feet for 143 seconds, or two minutes and twenty-three seconds. The plan had been to fly 894 feet for 135 seconds, but has been happening consistently for the past dozen or so flights, the helicopter spent a little more time in the air and traveled a little farther.

As for altitude, it apparently did exactly as planned, averaging about 40 feet in height until the end of the mission, when Ingenuity went straight up another twelve feet to get a wider view of its landing area.

The map to the right shows the context. The green dot marks Ingenuity’s location at the start of the flight. The green line indicates my approximate estimate of its flight path and landing area, which the engineering team has not yet posted. The white dots and line mark Perseverance’s path, with its present location at the area dubbed Tenby where it has obtained its first core sample from the top of the delta.

Sponge terrain on Mars

Sponge terrain on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 11, 2023 by the high resolution camera on Mars Reconnaissnace Orbiter (MRO).

The scientists labeled this picture “Rocky Terrain.” Though this describes the overall sense of the full image, it fails to capture correctly the nature of this patch of ground at the center of the picture. As you can see, this patch of spongelike surface starts and ends abruptly. It appears that it is a layer on top of the surrounding terrain that has also been eroded aggressively since its placement.

The many craters on its surface seem to have come later, though as the crater size diminishes it becomes harder to separate the craters from the sponge holes. Moreover, some of the larger craters are distorted in shape, as if the impact hit material that was viscous and could flow somewhat.

The overview map below gives some context, but only some.
» Read more

1 19 20 21 22 23 27