India delays next launch of its largest rocket

India has delayed the next launch of its GSLV rocket from January to no earlier than March in order to conduct tests on the rocket.

This does not change the schedule for the next launch of their smaller PSLV rocket, which is still set for February and will launch a record of over a hundred satellites, most of which are smallsats.

Posted from Tucson Internationa Airport. I am heading to St. Louis today to give a lecture to the local chapter there of the AIAA.

Pakistan test fires a submarine-launched cruise missile

Does this make you feel safer? Pakistan last week successfully tested a submarine-launched cruise missile with a range of 300 miles and capable of carrying nuclear warheads.

The article provides a lot of detail not only on Pakistan’s capabilities but of India’s as well.

Although still a far cry from India’s 6,000 ton displacement Arihant class nuclear ballistic missile submarines (one is service and three others planned) and the short-range K-15 or medium-range K-4 ballistic missiles they carry, Pakistan’s nuclear armed Agosta class boats at least get the country in the second strike game, but in a very minimal way.

The Indian Navy’s anti-submarine capability is credible, and their submarine fleet includes multiple diesel-electric submarines of different origin, as wells a Russian Akula II class nuclear fast attack boat. So keeping an eye on Pakistan’s tiny Agosta 90B fleet will be possible, although it is not clear what level of confidence the Indian Navy has that they can always keep the boats in their own submarines’ crosshairs. Not just that, but even attempting to do so will tie up valuable assets that could better be assigned to deterring other regional nuclear powers, like China.

India considers going to Jupiter and Venus

The competition heats up: India’s space agency ISRO is considering unmanned missions to both Jupiter and Venus, while also delaying their first manned test flight four years until 2024.

More significant, the second link had this quote:

Mr Somnath said during the current fiscal, Isro planned eight PSLV flights, up from six in 2016. “Our aim is to steadily increase the launches between 12 and 20 in phases with creation of necessary infrastructure.

Like everyone else, they are getting enough business to up their launch rate. 2017 is going to be an active year in the launch market.

India hires private companies to build satellite

The competition heats up: For the first time India’s space agency ISRO has signed a deal with a private consortium of private companies to have them build satellites.

The contract signed on Friday includes assembly, integration and testing (AIT) of two spare navigation satellites consecutively in around 18 months. It was signed between M. Annadurai, Director of ISRO Satellite Centre (ISAC), and the consortium lead, Alpha Design Technologies P Ltd. ISAC assembles the country’s satellites for communication, remote sensing and navigation.

From the third year, Indian industry could expect competitive bids for a new lot of spacecraft of 300-500-kg class, perhaps five a year, for both ISRO and for export, Col. H.S. Shankar (retd), CMD of Alpha Design, told The Hindu. This is the first time that ISRO has outsourced an entire satellite to industry, said Col. Shankar .

The Modi government appears to be trying here to emulate NASA in putting private companies in charge of construction, rather than having things designed and built in-house by ISRO. This is a very good sign. If they do it now, in the early days of their space effort, they can reduce ISRO’s ability to grow into a large bureaucracy with its own vested interests.

Design flaw in India’s Mars Orbiter

According to American researchers, a fundamental design flaw in the primary scientific instrument on India’s Mangalyaan Mars orbiter prevents it from carrying out its mission of measuring the methane in the Martian atmosphere.

“They did not design this properly for the detection of methane on Mars,” Michael Mumma, senior scientist at NASA’s Goddard Space Flight Center, told Seeker. In 2003, Mumma led a team that made the first definitive measurements of methane on Mars using an infrared telescope in Hawaii. The methane, which appeared in plumes over specific regions of Mars, reached a maximum density of about 60 parts per billion. “The (MOM) instrument is beautifully engineered, but not for the methane task. It has other value, but unfortunately they will not be able to provide measurements of methane at the levels needed to sample even the plumes we saw,” Mumma said.

They are re-purposing the instrument to measure the reflected sunlight coming off the Martian surface, useful data to be sure but hardly worth an entire space mission.

ISRO begins ground tests of its first lunar lander

The competition heats up: ISRO, India’s space agency, has begun testing the sensors its first lunar lander, Chandrayaan-2, will use to descend safely to the surface.

ISRO Satellite Centre or ISAC, which is the lead centre for the country’s second moon mission, has artificially created eight to ten craters to make the terrain resemble the lunar surface. This terrain is now the test bed for the lunar Lander’s sensors. Between Friday and Monday, a small ISRO-owned aircraft carrying equipment with the sensors flew a few times over these craters to see how well they performed.

PSLV places multiple satellites into different orbits

The competition heats up: India’s space agency ISRO has successfully used its PSLV rocket to launch eight satellites into two different orbits.

After the successful separation of SCATSAT-1, the PSLV-C35 mission continued. Still carrying the seven co-passenger satellites, the fourth stage of PSLV coasted over the South polar region and then started ascending towards the Northern hemisphere. A safe distance between the orbiting SCATSAT-1 and PSLV-C35 fourth stage was maintained by suitably manoeuvring the stage.

At 1 hour 22 minutes and 38 seconds after lift-off as the fourth stage was in the North polar region, the two engines of PSLV fourth stage were reignited and fired for 20 seconds. As a result of this, it entered into an elliptical orbit measuring 725 km on one side of the Earth and 670 km on the other. And 50 minutes later, as the PSLV fourth stage was again coasting near the south pole, its engines were fired for another 20 seconds. This second firing made the fourth stage to enter into a circular orbit of 669 km height inclined at an angle of 98.2 degree to the equator. 37 seconds later, the Dual Launch Adapter was successfully separated from the PSLV-C35 fourth stage. 30 seconds after this event, ALSAT-1N was the first co-passenger satellite to be separated successfully. Following this, the NLS-19, PRATHAM, PISAT, ALSAT-1B, ALSAT-2B, and Pathfinder-1 were separated from the PSLV fourth stage in a predetermined sequence thereby successfully completing PSLV-C35 mission.

This launch was also the 36th successful PSLV launch in a row.

India army suffers largest terrorist attack in decade

Guess who: On Sunday seventeen India soldiers were killed by terrorists thought to come from a Islamic terror group based in Pakistan.

The Director General of Military Operations, Lieutenant General Ranbir Singh, said the terrorists were foreigners and there are clear signs of the role of the terror group Jaish-e-Mohammed, whose chief Masood Azhar is based in Pakistan. The group had been involved in the attack on Pathankot air base in January during which 7 army-men were killed.

An analysis of the situation can be read here.

India’s GSLV rocket successfully launches again

The competition heats up: India’s Geosynchronous Satellite Launch Vehicle (GSLV) successfully placed a commercial communications satellite in orbit today.

This is the third successful GSLV launch in a row, indicating that India’s space agency ISRO has finally worked out the kinks of their home-built upper stage and are ready to begin regular and more frequent commercial launches, in direct competition with the world’s big players in the launch industry.

India tests scramjet successfully

The competition heats up: Using a newly developed suborbital sounding rocket, India today successfully tested its first scramjet engines.

The scramjet engine, used only during the atmospheric phase of the rocket’s flight, will help in bringing down the launch cost by reducing the amount of oxidiser to be carried, along with the fuel. Later, the ISRO in a statement said: “With this flight, critical technologies such as ignition of air-breathing engines at supersonic speed, holding the flame at supersonic speed, air intake mechanism and fuel injection systems have been successfully demonstrated.” The scramjet engine designed by ISRO uses hydrogen as fuel and the oxygen from the atmospheric air as the oxidiser.

The real question is whether India can do something that NASA has never been able to do, go beyond tests and get a scramjet engine installed in a rocket and put it to use. NASA’s history is filled with many similar test programs, each hailed as great achievements that will someday revolutionize the launch industry, and then forgotten and shelved.

TMT will probably not go to India

An Indian astronomer, in testimony to India’s parliament, has explained that for engineering and technical reasons India will likely not be the new location of the Thirty Meter Telescope (TMT).

Essentially, the skies are clearer in the Canary Islands and in Chile.

This story is important in that it confirms that the consortium building TMT is now very seriously considering abandoning Hawaii, and might already have decided to do so. It also suggests that the Canary Islands is in the lead as the new location, since they want a site that can see the skies of the northern hemisphere, something that won’t be possible in Chile.

India faces $1 billion in damages for space contract cancellation

An arbitration court at the Hague yesterday ruled that India faces $1 billion in damages because of its unilateral cancellation in 2011 of a satellite deal between itself and a private company.

More info here. Essentially the ruling says that India had made a legal commitment when it signed the contract, and by unilaterally cancelled it they did harm to the private company’s shareholders.

This case illustrates that, despite India’s successes in space, it is still running a government space program, with all the flaws that come with it. Paying off these damages will likely put a serious crimp in the country’s space effort in the next few years.

The Indian government considers privatization

The competition heats up: The Indian space agency, ISRO, is discussing with private companies ways in which it might privatize its smaller and successful rocket, the Polar Satellite Launch Vehicle (PSLV).

In order to step up the launch capacity within the country, ISRO is in the process of exploring the possibility of involving Indian industry in a greater role to meet the increased national requirements and possible commercial demand for launch services. Discussions are being held with the Indian industry towards formulating a plan and strategy to enhance the capacity as well as capability of managing the Polar Satellite Launch Vehicle (PSLV) programme on an end to end basis.

The sense I get from this ISRO announcement is that the government is taking the lead, trying to drag the private companies forward to take over. I also sense that both the private companies as well as ISRO are at the moment are somewhat uninterested in doing it. Neither impression is stated anywhere in this announcement and are merely my personal impressions, based literally on no inside information, which of course means I could be very wrong.

India’s government proposes ending satellite competition

The competition cools down? A regulatory agency in India is proposing eliminating commercial satellite competition and consolidating all satellite television broadcasts onto a handful of government owned and launched satellites.

Indian Prime Minister Narendra Modi’s “Make in India” campaign seeks to promote India’s domestic industrial base. The Telecom Regulatory Authority of India (TRAI) on May 23 published what it calls a “pre-consultation paper” that points to the savings satellite-television broadcasters could realize if they stopped beaming the same programs on different satellites, and instead banded together on one or two spacecraft.

As of March 2015, the latest period for which TRAI has produced figures, there were 76 million DTH subscribers in India, of which 41.1 million were considered active. These subscribers received programming from six pay TV DTH providers and one free-to-air satellite broadcast service. TRAI said multiple DTH providers are broadcasting the same channels even as they compete with each other for subscribers. “There is scope for better utilization of available infrastructure,” TRAI said. “There is a need to examine technical and commercial issues in sharing of infrastructure such as satellite transponders, Earth station facilities….”

There is also this important component to the story:

India has been one of the biggest satellite-DTH growth markets in recent years, but one in which barriers to entry by foreigners remain high. Under Indian law, television broadcasters seeking operating licenses are given preferential treatment if they use India’s own Insat telecommunications satellites, owned and operated by the Indian Space Research Organization (ISRO). Non-Indian satellites are permitted if ISRO’s Insat system does not have sufficient capacity to meet programmers’ demand. This has been the case for years as ISRO has been unable to keep up with the market for satellite television.

In other words, the commercial satellite business in India is doing great, so let’s muck it up by having one government agency create a monopoly for another government agency.

The United States tried this in the 1960s when it banned private companies from launching commercial communications satellites and instead required all such satellites to be built by the government-managed Comsat corporation. The result in the U.S. was a squelched satellite and launch industry that did not recover for more than a decade, and only did so when the Nixon administration forced a change in the rules.

TMT calls for removal of official supervising permit process

The University of Hawaii has filed a motion to have the hearing officer in charge of the new permitting process for the Thirty Meter Telescope (TMT) removed.

What the lawyers for TMT appear to be doing is trying to prevent further delaying tactics by those opposing the telescope. Their motion describes these delaying tactics, which involve questioning the objectivity of various officials involved, but doing it piecemeal in order to slow the permitting process down as much as possible. The officer in question has membership in an astronomy center, and though the anti-TMT forces have not yet questioned this, TMT lawyers want to act now to remove that possibility later.

Once again, I think TMT officials are spinning their wheels. Hawaii will never give them permission to build TMT. Read the ten-point plan of Hawaii’s governor for protecting Mauna Kea and you will agree. They should move the telescope to a more friendly location as soon as possible.

India test flies its first spaceplane prototype

The competition heats up: India this morning successfully completed a test flight of its first spaceplane engineering prototype.

After a 90sec burn, the booster delivered the RLV-TD to the proper altitude before separating from the prototype and destructively fall back to Earth in the Bay of Bengal. Meanwhile, the RLV-TD continued on, falling back into Earth’s atmosphere at hypersonic velocity. During this hypersonic test, the RLV-TD pitched its nose up relative to the horizon and direction of travel – just as the Space Shuttles did during atmospheric entry. This allowed engineers to gather valuable in-flight data surrounding the performance of the vehicle’s thermal protection system (600 heat-resistant tiles and a carbon-carbon nose), its aerodynamic characteristics during hypersonic flight, and inform the overall design of the eventual full-scale RLV.

The prototype was designed to test the flight characteristics of the spaceplane, not its landing capabilities. If all went as planned, it would have glided horizontally into the ocean, as if it was landing on a runway, but then sink.

Another successful launch for India

The competition heats up: India has successfully launched its seventh home-built GPS satellite, completing their GPS constellation.

The seven first-generation satellites have been launched over a three-year period, starting with the deployment of IRNSS-1A in July 2013. ISRO has launched all of the satellites itself using the PSLV rocket. The flight number for Thursday’s launch was PSLV C33, which saw the vehicle fly in its most powerful configuration, the PSLV-XL. This version of the PSLV was introduced in October 2008 with the launch of the Chandrayaan-1 lunar probe, and features more powerful solid rocket boosters than the standard PSLV, increasing the amount of payload it can carry into orbit.

Meanwhile, they are gearing up for the first test flight of the engineering prototype of their reusuable spaceplane.

Pakistan pulls out of India satellite project

This op-ed provides a revealing outline of how the political tensions in Islamic Pakistan have damaged efforts by India to work together on a satellite project.

In 2014, Prime Minister Narendra Modi had announced India’s decision to develop (and gift) a satellite to benefit all SAARC member countries [South Asian Association for Regional Cooperation] in different fields like weather data exchanges, disaster management, telecommunication and tele-medicine. The work on this satellite has already begun at the Indian Space research Organisation (ISRO), and the satellite is expected to be launched by the end of 2016. After remaining indecisive about this project for long, Pakistan has finally decided to opt out of the SAARC satellite project. Now, India would launch this satellite not as a satellite for SAARC, but as a South Asia satellite.

Pakistan’s decision may not be totally surprising given the current chill in the India-Pakistan relationship. The initial discussions on this project were progressing in a constructive fashion with Pakistan. However, Pakistan subsequently made a technical and financial help offer to India for the construction of the satellite. This was not accepted by India, which could be one of the main reasons for Pakistan opting out of this project. Obviously, Pakistan has missed an opportunity to develop ‘orbital cooperation’ with India in spite of having ‘terrestrial confrontation’.

The article, describing other cooperative efforts by India, including working with Russia and China to link the GPS systems of the three countries. once again indicates to me that India as a country is successfully becoming a first world nation.

India to test reusable mini-shuttle in May

The competition heats up: ISRO, India’s space agency, this week announced plans to conduct its first test flight of its half-scale prototype reusable launch vehicle in May.

The RLV, is a scaled-down prototype (some 21.3 feet in length or 6.5 meters) of a future uncrewed single-stage reusable spaceplane, known as Avatar, that is being designed by the ISRO. The May mission will be a technology demonstrator (RLV-TD) to test powered cruise flight, autonomous landing and hypersonic flight using an air-breathing propulsion system. The spacecraft, which resembles a small winged aircraft, will be launched from the first launchpad of the Satish Dhawan Space Centre to an altitude of 43 miles (70 km) atop a two-stage Rohini sounding rocket and then released. It will re-enter the atmosphere and travel back to Earth in a controlled descent, to be recovered from the Bay of Bengal. [emphasis mine]

This vehicle is kind of Inida’s version of the Air Force’s X-37B, except that it is also testing a hypersonic scramjet engine, a cutting edge design that the U.S. has barely been able to fly successfully. Should they succeed, it will place them smack dab in the middle of the elite club of space-faring nations.

India signs deal for its own LIGO

India today signed an agreement with the National Science Foundation to build its own LIGO gravitational wave detector

This deal, combined with the possibility that TMT might move to India as well, suggests that India is about to move aggressively from the Third World to the First. And the reason, after decades of wallowing in poverty and failure, is that they finally abandoned in the late 1990s the Soviet models of socialism and communism and embraced private enterprise and capitalism, ideas championed by the United States.

If only some modern Americans would do the same.

Federal law outlaws launches on foreign rockets

Killing competition: The American launch industry as well as the FAA regulators are in agreement that a 2005 law that limits American small satellite companies from using foreign launch companies should remain in place.

The CSLA, dating from 2005, is the U.S. government’s way of protecting the seemingly forever-nascent U.S. small-satellite launch industry from competing with government-controlled foreign launchers for U.S. business. It seeks to oblige non-U.S. rocket providers to sign a CSLA that, for all intents and purposes, sets U.S. commercial launch prices as the world minimum for government-owned non-U.S. launch providers.

The rationale is that these non-U.S. launchers, not bound by the constraints of profit and loss – but hungry for hard-currency export earnings – will undercut commercial U.S. companies’ launch prices and keep them from gaining market traction.

India’s launch rockets, for example, are designed and built by India’s space agency ISRO, and are backed not by private funds but by government money. The fear is that India could subsidize its rockets so that the price could always be kept below what any American company could charge.

The truth, however, is that competition and innovation, here in the U.S., has so successful undercut foreign prices that no amount of subsidies can hope to compete. Those foreign companies are now scrambling to actually redesign their rockets to lower their costs and thus their prices, rather than asking for more handouts from their governments. This law should be repealed.

TMT consortium considers India for telescope

India is now a second candidate location to replace Hawaii for the Thirty Meter Telescope.

Hanle in Ladakh has been short-listed as a prospective site by the TMT board following major hurdles in Mauna Kea, Hawaii – the first choice for the project. An international team is expected to visit Ladakh in a couple of months. … India is already building edge sensors, actuators and system support support assemblies, besides contributing to the software of TMT. India is expected to invest $212 million in the project.

Not only is India contributing technology and money to the telescope, institutes in the country are also participating in the consortium.

Two major scientific institutions – the Indian Institute of Astrophysics (IIA) Bengaluru and the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune – along with two government departments having working on the project since 2013. The department of science and technology (DST) and the Department of Atomic Energy (DAE) are the government partners, while IIA is the nodal agency.

I think the odds continue to increase that TMT will abandon Hawaii, especially since the state government there continues to drag its feet.

India launches sixth GPS satellite

The competition heats up: India has successfully launched the sixth satellite in its own GPS constellation. using its PSLV rocket.

They will complete the GPS constellation with a seventh satellite launch in April. The system however is already functioning, as it only needs a minimum of four satellites to work. Unlike the U.S. 24 satellite system, which is designed to be global, India’s system is regional with its focus centered over India itself. This is why they do not need as many satellites for it to function effectively.

1 8 9 10 11 12 15