Mangalyaan’s first global images of Mars

Indian engineers have released the first global images taken by Mangalyaan.

As MOM’s orbit is highly elliptical, reaching from 262 miles (periareon — closest approach) to 47,841 miles (apoareon — farthest extent), we can expect a lot more global views from Mars’ newest satellite, providing us with a beautiful global perspective of a planet that currently has seven robotic missions (from three different space agencies) exploring it.

These images suggest that a dust storm is beginning to stir on the Martian surface.

Mangalyaan sends its first Mars pictures

Mangalyaan's first image of Mars

Indian engineers have posted Mangalyaan’s first image on the spacecraft’s Facebook and Twitter accounts, as well as presented the photo to their nation’s leader.

My first reaction when I looked at the image above was an immediate flashback to 1969, when the American probes Mariner 6 and Mariner 7 flew past Mars, taking images of its cratered southern hemisphere and thus making scientists think for several years that Mars was not much different than the Moon. The Indian image is of about the same quality, and shows lots of moon-like craters.

Image if this was the first close-up image of Mars anyone had ever seen. It would be very easy to assume that Mars is pockmarked with craters everywhere, just like the Moon.

Why India’s Mars probe was so cheap

Alan Boyle has some interesting thoughts on why it cost India so little, less than the budget of the movie Gravity, to build and send its probe Mangalyaan to Mars.

The $74 million Mars Orbiter Mission, also known by the acronym MOM or the Hindi word Mangalyaan (“Mars-Craft”), didn’t just cost less than the $100 million Hollywood blockbuster starring Sandra Bullock. The price tag is a mere one-ninth of the cost of NASA’s $671 million Maven mission, which also put its spacecraft into Mars orbit this week. The differential definitely hints at a new paradigm for space exploration — one that’s taking hold not only in Bangalore, but around the world. At the same time, it hints at the dramatically different objectives for MOM and Maven, and the dramatically different environments in which those missions took shape.

Read it all. It gives us a hint at the future of space exploration.

Success for India’s Mars Orbiter Mission

The competition heats up: On Wednesday morning India’s Mars orbiter Mangalyaan successfully fired its engines and attained Mars orbit.

More here.

There are probably three dozen stories in the India press today extolling this success. And there should be. As described in detail in the second link above, India did this mission smart, simple, and fast, showing everyone else that a science mission doesn’t have to take a decade and a billion dollars to be get built.

I expect that this success will quickly lead to the Indian manned flight tests their space agency ISRO has been advocating for the past few years.

MAVEN enters Mars orbit

Upon completion of its engine burn this evening at 10:10 pm (eastern), MAVEN successfully entered Mars orbit.

Stephen Clark’s status updates on Spaceflight Now were accurate, informative, and right on the money. The live telecast on NASA-TV was confusing, idiotic, distracting, and uninformed. They never once announced when the engine burn had started, ignored the reactions of the people in the control room when they cheered some important event, and spent a lot of time discussing facts that were irrelevant to this event, which is “Will MAVEN achieve orbit!?” Worst of all, the male “anchor” was clearly ignorant of the mission while the female “anchor” spoke in a sing-song manner as if her audience were kindergarten toddlers who needed careful herding. All in all, it was embarrassing to watch.

They did manage to shut up just in time to catch the announcement from mission control that telemetry had confirmed that MAVEN had reached orbit. They then went back to chattering about irrelevant stuff. As I said, embarrassing.

The competition in space continues to heat up

Two news stories today indicate that things are going to get increasingly interesting in the exploration of space in the coming years.

First there is this story from Joe Abbott of the Waco Tribune, who routinely reports on SpaceX news because their McGregor test facility is nearby. In it Abbott reports that SpaceX has scheduled its next Dragon supply mission to ISS for no early than September 20.

This news item however is not Abbott’s most interesting news. He also notes several twitter reports coming out a commercial satellite conference in Paris that indicate that SpaceX has closed 9 deals, including several more for its as yet unflown Falcon Heavy.

But even that is not the most interesting news. Abbott also reports that a replacement for the destroyed Falcon 9R test vehicle will be shipped to McGregor for testing in less than two months. Considering how long it takes governments to build and fly test vehicles, getting this replacement in shape for flight mere months after the failure a few weeks ago is quite impressive.

But even that was not Abbott’s most interesting SpaceX news item. » Read more

Curiosity to begin climbing

Scientists have decided to begin Curiosity’s climb of Mount Sharp immediately rather than continue a planned traverse along the base of the mountain prior to heading uphill.

Curiosity’s trek up the mountain will begin with an examination of the mountain’s lower slopes. The rover is starting this process at an entry point near an outcrop called Pahrump Hills, rather than continuing on to the previously-planned, further entry point known as Murray Buttes. Both entry points lay along a boundary where the southern base layer of the mountain meets crater-floor deposits washed down from the crater’s northern rim.

The issues with Curiosity’s wheels also played a part in this decision.

Review panel approves extensions for seven planetary missions.

In approving extensions of seven NASA planetary missions, a review panel concluded that the Curiosity rover wasn’t doing the best it could, and that the project scientist didn’t work hard enough to change their minds.

The Mars Science Laboratory’s Curiosity rover landed on the red planet in August 2012. Equipped with a drill to gather surface samples and spectroscopy equipment to analyze the samples, the rover has collected and analyzed five surface specimens so far and, according to the extended mission proposal just approved by NASA, would analyze another eight over the next two years. That is “a poor science return for such a large investment in a flagship mission,” a 15-person senior review panel chaired by Clive Neal, a geologist at the University of Notre Dame in South Bend, Indiana, wrote in a report published Sept. 3.

The report also chided John Grotzinger, the lead Curiosity project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, for neglecting to show up in person during a Mars-focused senior review panel meeting in May. “This left the panel with the impression that the [Curiosity] team felt they were too big to fail,” the senior review panel wrote.

This sounds like a pissing war between scientists. Grotzinger didn’t give them the required deference so they slammed him. No matter happened, however, we know they weren’t going to cancel Curiosity’s funds.

Opportunity to get a reboot

Because of an increasing number of computer resets on the Mars rover Opportunity, engineers plan to reformat the rover’s computer.

The resets, including a dozen this month, interfere with the rover’s planned science activities, even though recovery from each incident is completed within a day or two.

Flash memory retains data even when power is off. It is the type used for storing photos and songs on smart phones or digital cameras, among many other uses. Individual cells within a flash memory sector can wear out from repeated use. Reformatting clears the memory while identifying bad cells and flagging them to be avoided.

Obviously there is a risk, though small, that this action will not work and the mission will end here. Stay tuned.

A problem with drilling on Mars

In drilling a new hole while scientists considered Curiosity’s future route to Mount Sharp, the drill cut off operations prematurely.

Engineers think that the rock might have shifted during drilling, causing the robot rover to abort. They have ordered the rover to take a lot of pictures of the situation so they can figure out what happened.

I should note that engineers take a large risk every time they use Curiosity’s drill, as the design of the rover’s electrical system is such that the drill might short everything out while it operates. Thus, when I see a story about a problem with any drilling operation, I become very concerned. In this case, however, it appears to not be a problem with the rover itself.

Curiosity retreats from Hidden Valley

Finding its sandy floor slipperier than expected, engineers have backed Curiosity out of Hidden Valley to drill some holes while they reassess the rover’s route.

The rover’s wheels slipped more in Hidden Valley’s sand than the team had expected based on experience with one of the mission’s test rovers driven on sand dunes in California. The valley is about the length of a football field and does not offer any navigable exits other than at the northeastern and southwestern ends. “We need to gain a better understanding of the interaction between the wheels and Martian sand ripples, and Hidden Valley is not a good location for experimenting,” said Curiosity Project Manager Jim Erickson of JPL. …

Curiosity reversed course and drove out of Hidden Valley northeastward. On the way toward gaining a good viewpoint to assess a possible alternative route north of the valley, it passed over the pale paving stones on the ramp again. Where a rover wheel cracked one of the rocks, it exposed bright interior material, possibly from mineral veins.

More and more, the journey to Mount Sharp appears to be increasingly adventurous for the rover.

The next U.S. Mars rover will try to make and store oxygen

Of the seven science instruments proposed for the next U.S. Mars rover, scheduled for a 2020 launch date, MOXIE test the engineering to produce and store oxygen, pulled from the Martian atmosphere.

Developed in partnership with NASA’s Jet Propulsion Laboratory, it’s based on the fact that the Martian atmosphere, though extremely thin, is composed of 96 percent carbon dioxide, which means its a vast potential source of oxygen for future explorers and settlers. Essentially, MOXIE is a fuel cell in reverse. Instead of generating electricity by using oxygen to burn a fuel, it uses a process called solid oxide electrolysis , where electricity is employed to split carbon dioxide into oxygen and carbon monoxide.

This process would see Martian air pumped into the unit through a dust filter and pressurized before being passed into a fuel cell. At high temperatures, some ceramic oxides act as oxygen ion conductors. In the fuel cell, a thin, non-porous disc of this ceramic separates two porous electrodes. One electrode acts as the cathode and the other as the anode. Carbon dioxide passes through the cathode and when it comes into contact with the ceramic, the interaction of electricity and the ceramic causes the carbon dioxide to split into oxygen and carbon monoxide. The oxygen and the carbon monoxide are then separated and the oxygen stored.

What makes this unusual is that NASA has actually dedicated one science instrument to engineering research, not pure science. The agency does not do this much anymore, but such research is essential if the U.S. is going to someday send humans to other planets.

ExoMars will likely miss 2018 launch date

Because of technical and financial issues the European/Russian ExoMars rover mission is expected to miss its 2018 launch window.

The main reason for the delay would be the ExoMars’ brand-new landing system, which is designed to safely take the rover through a fiery descent in the Martian atmosphere and then softly land it on the surface of the Red Planet.

In addition to its late development start, the landing system has a complicated share of responsibilities between Russia and Europe, which greatly slows down the work. For example, the overall landing system is being developed by NPO Lavochkin in Moscow, while its parachute system will be provided by Europe. Many other aspects of the mission are similarly intertwined.

To further complicate matters, NPO Lavochkin, which traditionally builds all Russian planetary probes, but also some of the highly classified military satellites, is notorious for its Soviet-style secrecy. As a result, it is harder for the two sides to coordinate the work, Europeans sources said. Finally, the translation of documents between Russian and English further delays the work on the project.

The program is also significantly over budget.

Commercial communications satellites for Mars?

The competition heats up? NASA is considering a different commercial approach for providing communications to and from its Mars probes.

The purpose of NASA’s request for information, or RFI, released July 23 “is to explore new business models for how NASA might sustain Mars relay infrastructure, consisting of orbiters capable of providing standardized telecommunication services for rovers and landers on the Martian surface, in the Martian atmosphere, or in Mars orbit,” according to a posting on the Federal Business Opportunities website.

According to the post, NASA will use information it receives from respondents to inform its future Mars exploration strategies, but the agency has not decided to pursue a commercial interplanetary telecom initiative. “We are looking to broaden participation in the exploration of Mars to include new models for government and commercial partnerships,” said John Grunsfeld, associate administrator of NASA’s science mission directorate, in a statement. “Depending on the outcome, the new model could be a vital component in future science missions and the path for humans to Mars.” [emphasis mine]

It is important to highlight the fact that NASA has not yet made a decision on this issue. The best thing the agency could do, in my opinion, would be to step back, design nothing, but let private companies bid on providing the service. The expertise at many of the private satellite companies providing communications efficiently and inexpensively to private customers worldwide would easily provide NASA better communications at Mars for less money.

In other words, like manned flight and cargo delivery to ISS, NASA should simply become a customer, and let private companies build and own the products that NASA buys.

Protecting the Mars orbiters from comet flyby

Engineers are repositioning the American spacecraft orbiting Mars so that they will be better protected by the planet when Comet Siding Spring flies past on October 19.

The comet’s nucleus will miss Mars by about 82,000 miles (132,000 kilometers), shedding material hurtling at about 35 miles (56 kilometers) per second, relative to Mars and Mars-orbiting spacecraft. At that velocity, even the smallest particle — estimated to be about one-fiftieth of an inch (half a millimeter) across — could cause significant damage to a spacecraft.

NASA currently operates two Mars orbiters, with a third on its way and expected to arrive in Martian orbit just a month before the comet flyby. Teams operating the orbiters plan to have all spacecraft positioned on the opposite side of the Red Planet when the comet is most likely to pass by.

The UAE wants to go to Mars

The competition heats up: The United Arab Emirates (UAE) announced today that it is creating a space agency to build and launch an unmanned mission to Mars by 2021.

The announcement included this statement by his Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice-President and Prime Minister of the UAE and Ruler of Dubai:

Despite all the tensions and the conflicts across the Middle East, we have proved today how positive a contribution the Arab people can make to humanity through great achievements, given the right circumstances and ingredients. Our region is a region of civilisation. Our destiny is, once again, to explore, to create, to build and to civilise. We chose the epic challenge of reaching Mars because epic challenges inspire us and motivate us. The moment we stop taking on such challenges is the moment we stop moving forward.

I wish them luck, since building spaceships and exploring the heavens is a far better occupation that trying to kill Jews. I remain skeptical however. They will have to show real achievement before I will believe this is something more than a simple feel-good public relations stunt by the UAE’s leaders.

Curiosity’s journey continues

After more than a full Martian year, Curiosity has finally traveled beyond the area of its initial landing zone.

The 1-ton Curiosity rover has now cruised out of its landing ellipse, the area — about 4 miles wide by 12 miles long (7 by 20 kilometers) — regarded as safe ground for its August 2012 touchdown within Mars’ huge Gale Crater, NASA officials said.

The interesting factoid from this article is how much smaller this landing zone was for Curiosity compared to all other previous landers, illustrating how the technology has advanced during the last four decades since Viking.

Dry ice evaporation creates the fresh gullies on Mars

New data from Mars Reconnaissance Orbiter shows that the fresh gullies that have been seen on the Red Planet are caused by dry ice evaporation, not liquid water as had been hoped.

Dundas and collaborators used the High Resolution Imaging Science Experiment (HiRISE) camera on MRO to examine gullies at 356 sites on Mars, beginning in 2006. Thirty-eight of the sites showed active gully formation, such as new channel segments and increased deposits at the downhill end of some gullies.

Using dated before-and-after images, researchers determined the timing of this activity coincided with seasonal carbon-dioxide frost and temperatures that would not have allowed for liquid water.

Frozen carbon dioxide, commonly called dry ice, does not exist naturally on Earth, but is plentiful on Mars. It has been linked to active processes on Mars such as carbon dioxide gas geysers and lines on sand dunes plowed by blocks of dry ice. One mechanism by which carbon-dioxide frost might drive gully flows is by gas that is sublimating from the frost providing lubrication for dry material to flow. Another may be slides due to the accumulating weight of seasonal frost buildup on steep slopes.

The findings in this latest report suggest all of the fresh-appearing gullies seen on Mars can be attributed to processes currently underway, whereas earlier hypotheses suggested they formed thousands to millions of years ago when climate conditions were possibly conducive to liquid water on Mars.

Update on the LDSD partly successful test flight

Another eleven news stories were published today on the LDSD test flight (go here to find them all), but only two gave an honest and informative appraisal of the parachute failure and the program’s future. This CBS report clarified the results well with these two quotes:

The Low-Density Supersonic Decelerator then fell toward impact in the Pacific Ocean northwest of Hawaii. The carrier balloon apparently came apart after the LDSD’s release and it was not immediately clear what recovery crews standing by in the landing zone might be able to retrieve.

and this:

Two more LDSD vehicles are being built for “flights of record” next summer.

Another report from Space Insider also provided this key information, something I would have expected every journalist in the world to have considered essential to their report.

Sadly, not one of the other news stories saw fit to mention that the test vehicle might have been destroyed because of the failure of the chute, nor did any of them bother to report that two more such test vehicles are under construction, allowing program to continue anyway.

That so many news stories were published on this test flight indicates the interest that exists in it. Too bad most reporters writing these stories were only interested in providing us propaganda and pro-NASA cheer-leading.

A flawed first flight for NASA’s saucer for testing Mars landing techniques.

NASA’s Low-Density Supersonic Decelerator (LDSD), the saucer shaped system for testing new landing techniques on Mars, did its first flight today with mixed results.

A saucer-shaped NASA vehicle testing new technology for Mars landings rocketed high over the Pacific on Saturday and deployed a novel inflatable braking system, but its massive parachute failed to fully unfurl as it descended to a splashdown. Control room cheers that greeted successful steps in the complex test rapidly died as the parachute appeared to emerge tangled. “Please inform the recovery director we have bad chute,” a mission official ordered.

I have found two other stories on this test flight, one from nasaspaceflight and the second from reuters. Both the Huffington Post story above and these two fail entirely to tell us whether the test vehicle was damaged when its parachute failed to open and it hit the water. Worse, all three articles seem to ignore this significant detail in describing enthusiastically NASA’s future plans for the LDSD.

As a reader, I instead think: NASA’s future plans are not the story now. The story is whether this program can even continue.

My Space Show appearance June 14, 2014.

For those who wish to listen to the podcast of my two hour appearance on the Space Show yesterday, you can get the podcast here. You can also comment on my discussion with David Livingston and his callers at the Space Show blog, or here.

The two major topics we discussed were first, Russia’s future in space in the context of that government’s effort to retake control of its entire aerospace industry, and second, the evidence that there is fraud and data manipulation going on in the climate research units of both NOAA and NASA. I also discussed some recent space science stories, such as Yutu on the Moon, Curiosity on Mars, and Cassini’s recent imagery of the lakes of Titan.

Glaciers on Mars!

A geological study of orbital images of Gale Crater has led scientists to conclude that the crater was once covered in glaciers.

To carry out the study, the team has used images captured with the HiRISE and CTX cameras from NASA’s Mars Reconnaissance Orbiter, together with the HRSC onboard the Mars Express probe managed by the European Space Agency (ESA).

Analyses of the photographs have revealed the presence of concave basins, lobated structures, remains of moraines and fan-shaped deposits which point to the existence of ancient glaciers on Gale. In fact they seem to be very similar to some glacial systems observed on present-day Earth. “For example, there is a glacier on Iceland –known as Breiðamerkurjökull– which shows evident resemblances to what we see on Gale crater, and we suppose that is very similar to those which covered Gale’s central mound in the past,” says Fairén.

This is not the first place on Mars where scientists believe glaciers once flowed. The northwestern slopes of Arsia Mons, one of Mars’s giant volcanoes in the Tharsis Bulge, is also believed to have once harbored glaciers.

The Curiosity science team celebrates the completion of a full Martian year since the rover’s landing.

The Curiosity science team celebrates the completion of a full Martian year since the rover’s landing.

This is mostly a press event aimed at convincing the world that the project is accomplishing its goals. Though they are justified in touting the many significant things about Mars and the past environment in Gale Crater that Curiosity has uncovered, we mustn’t forgot that the main goal was always to climb the slopes of Mt Sharp in order to study its geological layers and thus the long term geological history of Mars. The rover has not yet done this, and because of the greater-than-expected wheel damage the rover is experiencing, is at risk of not being able to get where it has to go.

The test of a new parachute system for Mars landing has been delayed until the end of June due to high winds.

The test of a new parachute system for Mars landing has been delayed until the end of June due to high winds.

The space agency was forced to scrub six launch attempts over the past two weeks — the latest and last planned for this Saturday (June 14) — as a result of unusually poor wind conditions at the U.S. Navy’s Pacific Missile Range facility in Kauai, Hawaii. The balloon-launched Low-Density Supersonic Decelerator (LDSD) craft is intended to help NASA develop the means to land heavier spacecraft, and eventually humans, on Mars.

“All of the vehicle systems [and] our team were ready and prepared for all of the launch days; we were ready to go,” said Mark Adler, LDSD project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “The only thing that held us up was that none of the launch dates had or will have acceptable weather conditions.”

They have literally run out of their available time at the range, and must let others play through first while they renegotiate for a new slot of time later.

1 66 67 68 69 70 80