Solar Orbiter captures Mercury crossing in front of the Sun
The European probe Solar Orbiter successfully filmed Mercury as it crossed in front of the Sun — from the spacecraft’s perspective — on January 3, 2023.
The transit was captured by several different instruments on Solar Orbiter, as shown at the link. The picture above is a screen capture from the short movie made by its Extreme Ultraviolet Imager. The black disk is Mercury, moving from the left to the right. In the background the limb of the Sun can be seen, with a distinct feature flaring out from that limb.
For Solar Orbiter, this particular transit offered a valuable chance to calibrate the instruments. “It is a certified black object travelling through your field of view,” says Daniel Müller, Solar Orbiter Project Scientist at ESA. Thus, any brightness recorded by the instrument within Mercury’s disc must be caused by the way the instrument transmits its light, called the point spread function. The better this is known, the better it can be removed. So be studying this event, the quality of the Solar Orbiter data can be ever further improved.
If the transit also produced some spectacular images, so much the better.
The European probe Solar Orbiter successfully filmed Mercury as it crossed in front of the Sun — from the spacecraft’s perspective — on January 3, 2023.
The transit was captured by several different instruments on Solar Orbiter, as shown at the link. The picture above is a screen capture from the short movie made by its Extreme Ultraviolet Imager. The black disk is Mercury, moving from the left to the right. In the background the limb of the Sun can be seen, with a distinct feature flaring out from that limb.
For Solar Orbiter, this particular transit offered a valuable chance to calibrate the instruments. “It is a certified black object travelling through your field of view,” says Daniel Müller, Solar Orbiter Project Scientist at ESA. Thus, any brightness recorded by the instrument within Mercury’s disc must be caused by the way the instrument transmits its light, called the point spread function. The better this is known, the better it can be removed. So be studying this event, the quality of the Solar Orbiter data can be ever further improved.
If the transit also produced some spectacular images, so much the better.