New analysis of Chandrayaan-1’s lunar orbital data might explain its detection of widespread surface hydrogen on the Moon

The Earth's magnetic field, shaped by the solar wind
The Earth’s magnetic field, shaped by the solar wind

One of the significant finds coming from India’s first lunar orbiter, Chandrayaan-1, was the detection of hydrogen in many places across the entire lunar surface, in places where it seemed impossible for hydrogen to be there, even if it was locked in a molecule like water.

Researchers in Hawaii now think they have found an explanation by linking that data to the Earth’s long magnetotail, formed by the solar wind pushing against the Earth’s magnetic field. The graphic to the right illustrates that process. The scientists focused on the kind of weathering processes that occurred both when the Moon was inside that tail, and when it was not.

Li and co-authors analyzed the remote sensing data that were collected by the Moon Mineralogy Mapper instrument onboard India’s Chandrayaan 1 mission between 2008 and 2009. Specifically, they assessed the changes in water formation as the Moon traversed through Earth’s magnetotail, which includes the plasma sheet.

“To my surprise, the remote sensing observations showed that the water formation in Earth’s magnetotail is almost identical to the time when the Moon was outside of the Earth’s magnetotail,” said Li. “This indicates that, in the magnetotail, there may be additional formation processes or new sources of water not directly associated with the implantation of solar wind protons. In particular, radiation by high energy electrons exhibits similar effects as the solar wind protons.”

In other words, the evidence suggests that the hydrogen signal seen by Chandrayaan-1 might have been a very temporary implacement of that hydrogen by the solar wind, which ceases during the Moon’s periodic passages through the magnetotail. The Moon’s harsh environment then causes that hydrogen to vanish, only to reappear when it is once again exposed to the solar wind.

None of this is confirmed, so some skepticism is required. If true, however, it would provide further evidence that the hydrogen signal seen at the lunar poles that scientists hope is evidence of ice in the permanently shadowed craters might be nothing of the sort, and we shall find little ice there.

Moon’s south pole permanently shadowed regions are younger than expected

Map of Moon's south pole, with permanently shadowed regions indicated
Click for original image.

A new long range model of the Moon’s orbit and rotational tilt now suggests that the permanently shadowed regions (PSRs) in its south polar regions are much younger than previous predicted, which reduces the likely amount of ice that has been preserved there.

The map of the south pole region to the right, reduced, sharpened, and annotated to post here, shows the locations of those shadowed regions, with their predicted ages indicated by the colors (Gyr = billion years). Note that the Nova-C lander, planned for launch in mid-November, will land somewhat near some relatively young PSRs, as indicated by the red cross. From the press release:

“We calculated the lunar spin axis orientation and the extent of PSRs based on recent advances for the time evolution of the Earth-Moon distance,” he said. Early in its history, the Moon (which is 4.5 billion years old) was bombarded by comets and volcanism released water vapor from its interior, but continuously shadowed areas started to appear only 3.4 billion years ago. By that time these processes had started to die down, so most of the water that was delivered to the Moon or outgassed from its interior could not have been trapped in the polar regions. Any ice in the polar regions today must have a more recent origin.

“We have been able to quantify how young the lunar PSRs really are,” Schorghofer said. “The average age of PSRs is 1.8 billion years, at most. There are no ancient reservoirs of water ice on the Moon.”

Since other data suggests the presence of ice, it is possible that these reserves are regularly renewed by the arrival of impacts. It also suggests however that there might be less ice available than hoped. Above all, the red colored regions appear to be the most valuable real estate to explore first.

Note: The landing sites for both India’s Vikram lander and Russia’s Luna-25 lander were well beyond the map’s upper right edge, far outside the region where any permanently shadowed craters are located. The news outlets that talked about finding water or ice on either mission were simply illustrating their ignorance and sloppy reporting.

Repeating moonquakes on Moon found to be caused by remaining sections of Apollo 17’s LM

Scientists reviewing the archive seismic data produced by the seismometers placed on the Moon by the Apollo missions have discovered that repeating small moonquakes in that data were actually caused by base of Apollo 17’s Lunar Module (LM) that provided a launchpad for the part of the LM that lifted the astronauts off the Moon.

Triangulating the origin of the mystery quakes, researchers surprisingly realized they came from the Apollo 17 lunar lander base, which expands and vibrates each morning as it becomes heated by the sun.

“Every lunar morning when the sun hits the lander, it starts popping off,” Allen Husker, a Caltech research professor of geophysics who worked on the project, said in a statement. “Every five to six minutes another one, over a period of five to seven Earth hours. They were incredibly regular and repeating.”

That the extreme range of temperatures experienced by the LM could cause detectable quakes as the LM base expanded suggests strongly how difficult it is for a spacecraft to survive the lunar night lasting 14 Earth days. For all we know, that base has now literally fallen apart due to these stresses. This in turn suggests it is highly unlikely that India’s Pragyan rover will come back to life when the sun rises on September 22, 2023.

Ridge in Martian lowland plains

Tiny ridge in Martian lowlands
Click for original image.

Today’s cool image is interesting not because it shows us some spectacular Martian terrain, but because the most distinct feature is a thin ridge only a few feet high that pokes up out of the northern lowland plains for apparently no reason.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The ridge is about 1.8 miles long, and is only about five feet high on its western end, rising to about 25 feet on its eastern end.

The colors differences indicate that the ridge’s peak is likely bedrock, and the surrounding greenish/blue hue suggesting sand and rocks covered with dust. The ridge might be the top of a deeper buried topological feature but that is only a guess.
» Read more

Japan successfully launches XRISM X-ray space telescope and SLIM lunar lander

SLIM's landing zone
Map showing SLIM landing zone on the Moon.
Click for interactive map.

Japan today (September 7th in Japan) successfully used its H-2A rocket to place both the XRISM X-ray space telescope and SLIM lunar lander into orbit.

As of posting XRISM has been successfully deployed. SLIM has not, as it needs to wait until after a second burn of the rocket’s upper stage about 40 minutes later. The map to the right shows SLIM’s landing target on the Moon, where it will attempt a precision landing within a zone about 300 feet across.

This was Japan’s second launch this year, so it does not get included in the leader board for the 2023 launch race:

62 SpaceX
39 China
12 Russia
7 Rocket Lab
7 India

In the national rankings, American private enterprise still leads China in successful launches 71 to 39. It also still leads the entire world combined, 71 to 64, while SpaceX by itself now trails the rest of the world (excluding American companies) only 62 to 64.

LRO takes image of Vikram on Moon


Click for interactive map. To see the original
image, go here.

The science team for Lunar Reconnaissance Orbiter (LRO) yesterday released an oblique image taken of India’s Vikram lander, on August 27, 2023, four days after the lander touched down about 370 miles from the south pole.

The LROC (short for LRO Camera) acquired an oblique view (42-degree slew angle) of the lander. … The bright halo around the vehicle resulted from the rocket plume interacting with the fine-grained regolith (soil).

That image is shown in the inset to the right. I have cropped it to focus on Vikram itself, which is in the center of the inset, with its shadow to its right, the opposite of all the surrounding craters. Pragyan is in this image, but neither it nor its tracks appear visible. The rover had moved west from the lander, which would be downward to the line of three craters near the bottom of the inset. To get a better sense of Pragyan route, compare this image with the map India’s space agency ISRO released on September 2nd.

Marilyn Lovell, wife of Apollo astronaut Jim Lovell, passes away at 93

Marilyn Lovell, holding son Jeffrey, watches the Saturn 5 lift-off with daughters Susan, right, and Barbara, left
Marilyn Lovell, holding son Jeffrey, watches Apollo 8 lift-off on
December 21, 1968 with daughters Susan, right, and Barbara, left

On August 27, 2023, Marilyn Lovell passed away at the age of 93 in Lake Forest, Illinois, where she and her astronaut husband had lived since he had retired from NASA following his last space mission, Apollo 13.

Jim Lovell of course is the famous one. In the 1960s space race he was the leading space cadet, spending more time in space than any other person, with flights on Gemini 7 (the longest mission yet), Gemini 12 (proved it was possible to do work on a spacewalk), Apollo 8 (first mission ever to another planet), and Apollo 13, which was supposed to be Lovell’s crowning achievement, a walk on the Moon. Unfortunately an explosion in the Apollo service module on the journey out to the Moon forced the crew to use its Lunar Module as a lifeboat so that the three astronauts could get back home safely. That failure meant Lovell would never step on the Moon, despite a life dedicated to taking the first tentative steps in the exploration and the eventual settlement of the solar system by the human race.

It could however be argued that none of that laudable career would have happened had he not had Marilyn Lovell for a wife.
» Read more

JAXA schedules last H-2A rocket launch, carrying X-Ray telescope and lunar lander

SLIM's landing zone
Map showing SLIM landing zone on the Moon.
Click for interactive map.

Japan’s space agency JAXA today announced that it has finally rescheduled the launch of its XRISM X-Ray telescope and its SLIM lunar lander launch for September 7, 2023, lifting off using the last flight of its H-2A rocket.

The previous launch attempt several weeks ago was scrubbed due to high winds. This new launch date has a window of seven days, which means if weather scrubs the September 7th launch they will be able to try again immediately within that window.

The white dot on the map to the right shows the targeted landing site of SLIM, which is testing the ability of an unmanned probe to land precisely within a tiny zone of less than 300 feet across.

Meanwhile, with the retirement of the H-2A rocket and its replacement having not yet flown successfully (its first launch failed in March), Japan after this launch will be in the same boat as Europe, without a large rocket and lacking the ability to put large payloads into orbit.

Engineers had Vikram do short flight hop prior to shutting down

Indian engineers revealed today that prior to putting the Vikram lander to sleep for the long lunar night, they had the lander use its rocket engines to do a short up and down flight. From the first link:

“On command it (Vikram lander) fired the engines, elevated itself by about 40 cm as expected and landed safely at a distance of 30 to 40 cm away,” ISRO said in an update on ‘X’.

Before doing the hop engineers stored Vikram’s instruments and rover ramp, then redeployed them afterward to gather a tiny bit of new data before putting everything into hibernation.

The hop test proved that Vikram’s engines could be restarted even after being on the Moon for almost two weeks, and thus could potentially be used on a future sample return mission. It also suggested a future mission could choose to change its landing site periodically by use of its landing engines.

Engineers place Pragyan into sleep mode

With lunar sunset looming, engineers have completed all work on both the lander Vikram and the rover Pragyan and have prepared Pragyan as best as possible to survive the long 14-Earth-day long lunar night.

Currently, the battery is fully charged. The solar panel is oriented to receive the light at the next sunrise expected on September 22, 2023. The receiver is kept on.

All data from Vikram’s instruments has been transmitted back to Earth, through the rover. It appears that the mission has been using the rover has the main communications relay, not the lander. It also appears there is no expectation of the lander surviving the lunar night.

Pragyan rover moves more than 300 feet away from Vikram

Map of Pragyan's traverse
Click for original image.

India’s space agency ISRO today released a map, shown to the right, that shows the entire traverse so far completed by its Pragyan rover in the Moon’s high southern latitudes. It has so far traveled more than 100 meters, or 300 feet, and continues to operate as planned.

The part of the traverse just south of the Vikram lander is where the lander filmed the rover doing several quick maneuvers and a 360 degree spin as engineers tested its operation before heading out on a longer journey. The rover’s image of the crater that the rover avoided, though released first, was actually taken afterward, after the rover had moved to the west.

Lunar sunset is in two days. Though engineers are preparing both Vikram and Pragyan for hibernation during that long lunar night, neither was designed to survive that extreme environment.

Vikram takes movie of Pragyan rover as it roves

Pragyan as seen by Vikram
Click for movie.

Using one of Vikram’s lander cameras, engineers have produced a short movie of India’s Pragyan rover as it rotated to avoid a small crater about ten feet ahead.

The picture to the right is from that 16-second movie, near its end. It appears that the engineers operating Pragyan were unhappy with almost any route ahead from its present position, as they rotated Pragyan almost 360 degrees, and even attempted forward motion at one point and then resumed rotation.

It is not clear if any of the craters visible in this picture are the crater that caused the detour. The movie however does provide a sense of scale. Pragyan is small, but it is able to maneuver easily using its six wheels.

Pragyan snaps first pictures of Vikram sitting on the Moon

Vikram as seen by Pragyan
Click for original image.

India’s space agency ISRO has released the first two pictures from the Pragyan rover showing the Vikram lander that bought both to the Moon safely.

The picture to the right is the close-up image, which shows two of Vikram’s science instruments. CHASTE is a probe that has been measuring the temperature of the Moon’s regolith at this spot, while ILSA is a seismometer for measuring the seismicity around the landing site.

Both spacecraft have been on the lunar surface now for one week, which means they are both halfway through their nominal two-week mission that lasts until lunar sunset, occurring on September 4th. Neither were designed to survive the 14-day-long lunar night, though engineers will attempt to kept both alive.

Vikram finds temperatures of lunar soil varies significantly, depending on depth

Temperature range of soil at Vikram landing site

Based on data from one of the instruments on India’s lunar lander Vikram, scientists have found that the temperatures of the lunar soil at the landing site vary significantly, depending on depth. The temperature dropped from 55 degrees Celsuis to -10 degrees Celsuis when going from about 10 millimeters above the surface to about 82 millimeters below the surface, as shown in the graph to the right.

That’s equivalent from going from a summer day in Death Valley of 131 degrees Fahrenheit to a winter day in Minnesota of 14 degrees Fahrenheit, in a distance of only about 3.5 inches. While it was expected that there would a temperature drop, it appears the quick temperature drop just below the surface was faster than expected.

JAXA scrubs launch of X-Ray telescope & SLIM lunar lander due to high winds

SLIM's landing zone
Click for interactive map.

Because of high winds, Japan’s space agency JAXA yesterday scrubbed the last launch of its H2A rocket, carrying the XRISM X-Ray telescope and the SLIM lunar lander.

A nice description of both payloads can be found here. XRISM is a simplified reflight of the Hitomi X-Ray telescope that failed immediately after launch in 2016.

Though SLIM carries a camera and two secondary payloads, both designed to hop along on the surface and obtain some data, its main mission is engineering, testing whether a robotic spacecraft can achieve a precision landing with a target zone of 100 meters, or 310 feet. The map to the right shows SLIM’s landing site, with the white dot in the close-up inset a rough approximation of that entire target zone. If successful this technology will make it possible to put unmanned planetary probes in places previously thought too dangerous or rough.

All three craft are designed to operate for only about fourteen days, during the daylight hours of the 28-Earth-day-long lunar day.

Both Vikram and Pragyan functioning as planned on the Moon

Pragyan on the Moon
Click to see full movie.

According to tweets from India’s space agency ISRO, both the Vikram lander and the Pragyan rover are functioning as planned on the lunar surface, with the rover successfully activating its two science instruments.

The image to the right, taken by Vikram, shows the rover as it completed its roll down the ramp onto the lunar surface. This is a screen capture from a movie showing that roll down, which you can see by clicking on the picture. Since then it has moved another 26 feet from the lander.

I must add once again that Vikram did not land “on the south pole”, as too many so-called news organizations have been falsely claiming. It landed at about 69 degrees south latitude, quite a distance from that pole, in a flat region with no permanently shadowed craters. It is not specifically looking for water, though its instruments might help explain the orbital data that suggests there are areas on the surface of the Moon where hydrogen is somehow present.

If so many news outlets can’t seem to get these very basic facts about this mission correct, one must ask what else do they get wrong routinely? I don’t ask, because I always assume their information is wrong, check it constantly, and find repeatedly that they get numerous basic facts incorrect, especially when it comes to reporting on politics.

India’s Pragyan rover has successfully been deployed on the lunar surface


Click for interactive map.

According to a tweet from India’s space agency ISRO late yesterday, the Pragyan rover has successfully rolled down its ramp and is now deployed on the lunar surface.

No further updates have yet been released. According to ISRO’s mission webpage the instruments on both Vikram and Pragyan are as follows:

Lander payloads: Chandra’s Surface Thermophysical Experiment (ChaSTE) to measure the thermal conductivity and temperature; Instrument for Lunar Seismic Activity (ILSA) for measuring the seismicity around the landing site; Langmuir Probe (LP) to estimate the plasma density and its variations. A passive Laser Retroreflector Array from NASA is accommodated for lunar laser ranging studies.

Rover payloads: Alpha Particle X-ray Spectrometer (APXS) and Laser Induced Breakdown Spectroscope (LIBS) for deriving the elemental composition in the vicinity of landing site.

Pragyan’s two spectroscopes are likely similar to instruments on Curiosity and Perseverance on Mars, and allows some good surface analysis. Without a scoop however there will be no analysis of anything below the ground, unless the rover can upend a rock using its wheels.

India successfully lands Vikram on the Moon


Click for interactive map.

India this morning successfully placed its Vikram lander, carrying its Pragyan rover, on the surface of the Moon in the high southern latitudes.

I have embedded the live stream below, cued to just before landing.

The next challenge is getting Pragyan to roll off Vikram, and spend the next two weeks exploring the nearby terrain. The mission of both it and Vikram is only planned to last through the daylight portion of the 28-day-long lunar day, so it is not expected for either to survive the lunar night. Both will make observations, but the main purpose of this mission has already been accomplished, demonstrating that India has the technological capability to land an unmanned spacecraft on another planet. That the landing was in the high southern latitudes added one extra challenge to the mission.

» Read more

Russian engineers pinpoint approximate crash site of Luna-25

Russian engineers have pinpointed the approximate crash site of Luna-25 on the Moon as the 42-mile-wide crater Pontecoulant G, located at about 59 degrees south latitude, 66 east longitude.

Researchers from the Russian Academy of Sciences’ Keldysh Institute of Applied Mathematics have simulated the trajectory of the Luna-25 mission, figuring out where and when it crashed into the moon’s surface, the institute said in a statement on Telegram. “The mathematical modeling of the trajectory of the Luna-25 spacecraft, carried out by experts from the Ballistic Center of the Russian Academy of Sciences’ Keldysh Institute of Applied Mathematics, made it possible to determine the time and place of its collision with the moon,” the statement reads.

According to the institute, the spacecraft fell into the 42-kilometer Pontecoulant G crater in the southern hemisphere of the moon at 2:58 p.m. Moscow time on August 19.

The planned landing site, in Boguslawsky Crater at 73 degrees south latitude and 43 degrees east longitude, was many miles away.

Watch the landing attempt of Chandrayaan-3’s Vikram lander on August 23, 2023


Click for interactive map.

After separating from its Chandrayaan-3 propulsion module on August 17, 2023, India’s Vikram lunar lander has been slowly making orbital adjustments in preparation for its landing attempt on August 23rd.

I have embedded the live stream of that landing attempt below. As it is scheduled for 6:04 pm (India time), in India, in the U.S. that landing will occur in the early morning hours of August 23rd.

Following the failed crash on the Moon of Russia’s lunar lander Luna-25 yesterday, this landing attempt is likely to garner a lot more interest. It is also India’s second attempt, having failed in 2019 when its Vikram lander ran out of fuel before landing and crashed.
» Read more

Luna-25 lost after crashing on Moon

During its last major orbital burn, Luna-25’s engines apparently fired for longer than planned so that, instead of placing it into a lower orbit, the spacecraft was de-orbited and sent crashing onto the lunar surface.

The Russian space agency noted that all measures regarding the location of the spacecraft and establishing communications with it on August 19 and 20 yielded zero results. “Preliminary analysis results suggest that a deviation between the actual and calculated parameters of the propulsion maneuver led the Luna-25 spacecraft to enter an undesignated orbit and it ceased to exist following a collision with the surface of the Moon,” Roscosmos stated.

This is a tragedy for Russia, as this mission hoped to re-establish it as one of the major players in the exploration of the solar system. Instead, we once again have a data point suggesting significant quality control problems within Russia’s aerospace industry. Its misplaced focus on providing government jobs rather than actually building and quickly flying spacecraft and rockets results too often in failure.

Luna-25 fails to enter orbit for landing on Moon

Though it is in lunar orbit, Russia’s Luna-25 lander today was unable to perform an engine burn as planned to place it in its final orbit for landing.

“Today, in accordance with the flight program of the Luna-25 probe, at 2:10 p.m. Moscow time, a command was issued to the probe to enter the pre-landing orbit. During the operation an emergency occurred on the space probe that did not allow it to perform the maneuver in accordance with the required parameters,” Roscosmos said.

Engineers are analyzing the issue, but no other information was released.

This issue could simply be the spacecraft’s computer aborted the engine burn because it sensed something not right, and that after some correction another burn can follow later. Under this circumstance the landing attempt would simply be delayed.

It is also possible something happened during that engine burn, and the spacecraft is either in an incorrect orbit, or might even be lost entirely. Stay tuned.

Luna-25 takes first image of lunar surface

Luna-25's first lunar image
Click for interactive map. Zeeman is located on the lower left.

Russia’s state-run press today issued the first picture taken by Luna-25 after entering lunar orbit two days ago. That picture, to the right and cropped and reoriented to post here, shows part of Zeeman Crater at 75 degrees south latitude and 135 degrees west, on the far side of the Moon. From the TASS announcement:

“The Luna-25 spacecraft, flying in a circular orbit as the Moon’s artificial satellite, has taken pictures of the lunar surface with television cameras of the STS-L system. The image, taken today at 08:23 Moscow time, shows the southern polar crater Zeeman on the far side of the Moon. The coordinates of the crater center are 75 degrees south and 135 degrees west,” the state corporation said. Roscosmos said the Zeeman crater is of great interest to researchers. Its rim rises eight kilometers above its relatively flat floor.

The picture shows Zeeman’s southern rim to the left, with its pockmarked crater floor to the right. The crater the lander is targeting, Broguslawsky Crater, sits in the opposite hemisphere of Zeeman, slightly closer to the south pole but on the Moon’s near side.

Chandrayaan-3’s Vikram lander separates from its propulsion module; Luna-25 in lunar orbit


Click for interactive map.

The two probes aiming to land in the high southern latitudes of the Moon in the next week are now both in lunar orbit and preparing for their planned landings.

First India’s Chandrayaan-3: With its propulsion module having completed the job of getting Chandrayaan-3 from Earth to lunar orbit, the Vikram lander today separated from that module in preparation for firing its own engines on August 23, 2023 and landing on the Moon.

Vikram needs to make several orbital adjustments before that landing attempt.

Second, Russia’s Luna-25 probe entered lunar orbit yesterday, where it will spend the next few days making its own orbital adjustments before attempting its landing on August 21st.

Vikram carries a small rover, Pragyan. Luna-25 is only a lander, though it has a scoop and will do analysis of the lunar soil below it. Neither is landing “near the south pole”, as most news sources are saying. They are landing at latitudes comparable to landing in the Arctic on Earth, on the northern coast of Alaska. As such, neither will find out anything about the question of remnant ice in south pole’s permanently shadowed regions.

Chandrayaan-3 reaches final lunar orbit for landing


Click for interactive map.

India’s Chandrayaan-3 spacecraft completed its final lunar orbital engine burn today, placing it in the correct orbit to release the lander Vikram, carrying the Pragyan rover.

The release is scheduled for tomorrow, with the landing targeting August 23, 2023. This will be India’s second attempt to softland an unmanned probe on the Moon. The Vikram lander of Chandrayaan-2 failed in 2019 during its final engine burn above the surface, crashing thereafter. Engineers at India’s space agency ISRO spent several years upgrading that lander to better insure this new attempt would succeed.

The lander has been given more ability to manoeuvre during the descent, the mission allows for a bigger 4 km x 2.4 km area for landing, more sensors have been added, one of the thrusters has been removed, and the legs of the lander have been made sturdier to allow for landing even at slightly higher velocity. More solar panels have also been added to ensure that the mission can go on even if the lander does not face the sun. More tests to see the capability of the lander in different situations were carried out to make Chandrayaan-3 more resilient.

Both Vikram and Russia’s Luna-25 lander, scheduled for touchdown on August 21, will land in the high southern latitudes of the Moon, at about 70 degrees. They are not going to the Moon’s south pole, as many news reports claim.

Intuitive Machines sets mid-November launch date for its Nova-C lunar lander


Click for interactive map.

Intuitive Machines announced yesterday that the launch of its lunar lander, Nova-C, is now targeting a November 15-20, 2023 window, lifting off on a SpaceX Falcon 9 rocket.

The yellow dot on the map to the right indicates the landing site, Malapert A, in the southern latitudes of the Moon. The white cross indicates the south pole.

The lander had originally planned to launch in 2021, but delays in construction pushed the launch back two years. A second company, Astrobotics, has its own lander, Peregrine, that though also delayed two years, has been ready to launch since early this year. It won’t launch until the end of this year at the earliest, however, due to delays in readying its rocket, ULA’s Vulcan on its first flight.

Both India’s Chandrayaan-3 and Russia’s Luna-3 are right now on their way to the Moon, with each planning a landing next week.

China makes available to the international community Chang’e-5’s lunar samples

China on August 2, 2023 announced that it is now allowing scientists from all nations to apply for access to the lunar samples brought back to Earth by its 2020 Chang’e-5 mission to the Moon.

The announcement outlined very specific rules for the loan of the samples, including requirements that if any part of a sample needs to be destroyed to study it that action be videotaped in detail. Samples loaned for research are for one year periods only, though this can be extended.

The rules also allow two month loans for the use of samples in public display, such as at a museum.

In both cases China will closely supervise the research and retain the right to recall the samples at any time if it doesn’t approve of what the borrower is doing.

U.S. law forbids our government officials or agencies from working with China, so don’t expect NASA or its scientists to apply for these samples. However, the law doesn’t apply to independent scientists, though serious state department regulations would apply. I therefore doubt many American scientists will apply for any samples. It would carry too many risks to their other research.

Chandrayaan-3 completes next-to-last orbital maneuver before releasing Vikram lander


Click for interactive map.

According to India’s ISRO space agency, its Chandrayaan-3 spacecraft has successfully completed the next-to-last orbital maneuver burn before releasing Vikram lander, lowering the spacecraft’s orbit around the Moon to 150 by 177 kilometers.

Today’s maneuver can be considered the second last vital maneuver. The one that takes place on August 16, will set the course for the Vikram lander.

Based on how today’s and August 16’s manoeuvres are executed, ISRO will get to decide where the Vikram lander touches down, among three predesignated spots on the Moon’s surface.

It had been my understanding that the landing zone was as indicated by the red dot on the map to the right. It might be instead that was only one of three potential landing sites. If so, I will update the map when more data is released.

Russia launches Luna-25 to the Moon


Click for interactive map.

After almost two decades of development, Russia today used its Soyuz-2 rocket to launch Luna-25, its first lander to the Moon since the 1970s.

The link is cued to the live stream, just prior to launch. It will take several days to get to the Moon and enter orbit, make some orbital adjustments, then land in Boguslawsky crater, as shown on the map to the right. It is likely its landing will occur before India’s Chandrayaan-3 lands on August 23rd but not certain, depending on the adjustments needed in lunar orbit. Both could even land on the same day.

The leaders in the 2023 launch race:

54 SpaceX
33 China
11 Russia
6 Rocket Lab
6 India

American private enterprise still leads China in successful launches 62 to 33, and the entire world combined 62 to 55, while SpaceX by itself now trails the entire world (excluding American companies) 54 to 55.

South Korea’s KARI space agency releases new images taken by its Danuri lunar orbiter

To celebrate the anniversary of its launch, South Korea’s KARI space agency today released new images taken by its Danuri lunar orbiter.

Images include views of Reiner Gamma, a so-called swirl, which features a localized magnetic field and marks a bright spot within the Oceanus Procellarum region. Another shows shadows inside Amundsen Crater, close to the lunar south pole and a potential landing site for NASA’s Artemis 3 mission, which is slated to put astronauts on the moon in late 2025.

Another southern feature captured by Danuri is Drygalski Crater, showing the central peak inside the impact crater.

1 7 8 9 10 11 37