Nobel laureates demand Iran release scientist sentenced to death

Seventy-five Nobel laureates have written and signed a letter to the Iranian government demanding it release the Iranian scientist who it convicted of espionage and sentenced to death.

The group wrote to Gholamali Khoshroo, the Iranian ambassador to the United Nations, on 17 November, and the letter was made public on 21 November. The Nobel laureates express their concern for the conditions of Djalali’s detention; they deem his trial “unfair” and “flawed”, and they urge the Iranian authorities to let him return to Sweden, where he lived.

The list includes prominent names such as Harold Varmus, a former director of the US National Institutes of Health, now at the Weill Cornell Medicine institute in New York, and Andre Geim, a physicist based at the University of Manchester, UK. They wrote: “As members of a group of people and organizations who, according to the will of Alfred Nobel are deeply committed to the greatest benefit to mankind, we cannot stay silent, when the life and work of a similarly devoted researcher as Iranian disaster medicine scholar Ahmadreza Djalali is threatened by a death sentence.”

The scientist, Ahmadreza Djalali, lived in Sweden and was accused by Iran of spying for Israel. He in turn said the conviction was revenge for his refusal to spy for Iran.

A spot on Mars, as seen by different orbiters over the past half century

Mars as seen over the past half century

The science team of Mars Reconnaissance Orbiter (MRO) have assembled a collection of images of the same location on Mars that were taken by different Martian orbiters, beginning with the first fly-by by Mariner 4 in 1965 and ending with MRO’s HiRise camera. The image on the right, reduced in resolution to post here, shows these images superimposed on that location, with resolutions ranging from 1.25 kilometers per pixel (Mariner 4) down to 50 meters per pixel (MRO).

This mosaic essentially captures the technological history of the first half century of space exploration in a single image. Mariner 4 was only able to take 22 fuzzy pictures during its fly-by. Today’s orbiters take thousands and thousands, with resolutions so sharp they can often identify small rocks and boulders.

The mosaic also illustrates well the uncertainty of science. When Mariner 4 took the first pictures some scientists thought that there might be artificially built canals on Mars. Instead, the probe showed a dead cratered world much like the Moon. Later images proved that conclusion to be wrong as well, with today’s images showing Mars to be a very complex and active world, with a geological history both baffling and dynamic. Even now, after a half century of improved observations, we still are unsure whether life there once existed, or even if exists today.

New study says recurring dark streaks on Mars are from flowing sand, not water

The uncertainty of science: A new study has concluded that the recurring dark streaks on Martian slopes are caused not from flowing seeps of water but from small sand avalanches.

Continuing examination of these still-perplexing seasonal dark streaks with a powerful camera on NASA’s Mars Reconnaissance Orbiter (MRO) shows they exist only on slopes steep enough for dry grains to descend the way they do on faces of active dunes.

The findings published today in Nature Geoscience argue against the presence of enough liquid water for microbial life to thrive at these sites. However, exactly how these numerous flows begin and gradually grow has not yet been explained. Authors of the report propose possibilities that include involvement of small amounts of water, indicated by detection of hydrated salts observed at some of the flow sites.

The results do not exclude the possibility that water plays a part, but do suggest it plays a much smaller part, or none at all.

Arecibo gets a backer to keep it running

The National Science Foundation has found at least one backer to pick up the majority of the cost for running the Arecibo Observatory in Puerto Rico, thus keeping it operational.

For about a decade, the National Science Foundation, which owns the observatory and supplies about two-thirds of its $12 million budget, had been mulling downsizing or even shuttering the telescope to free up funds for other projects. Instead, the NSF will continue scientific operations at the facility in collaboration with an unnamed partner organization, according to a Record of Decision signed this week.

Arecibo sustained $4 million to $8 million in damage during the hurricane, according James Ulvestad, acting assistant director for the agency’s mathematical and physical sciences directorate. Some scientists worried that would weaken the case for keeping the observatory operational.

But Ulvestad said the agency’s Record of Decision reflects that it has received viable partnership proposals from one or more collaborators — though he would not provide details about those proposals. This announcement allows the NSF to move forward with negotiations on a new management contract.

Under the new plan, the agency will reduce its annual contribution to the observatory from about $8.2 million to $2 million over the next five years. It is also committed to funding any repairs required to restore Arecibo to its pre-hurricane condition, Ulvestad said.

Mars rover update: November 16, 2017

Summary: Curiosity does drill tests, crosses Vera Rubin Ridge. Opportunity finds evidence of either ice or wind scouring on rocks in Perseverance Valley.

Curiosity

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Curiosity looks up Vera Rubin Ridge, Sol 1850

Since my last update on September 6, Curiosity has continued its travels up and across Vera Rubin Ridge, a geological bedding plain dubbed the Hematite Unit. The panorama above, created by reader Phil Veerkamp, shows the view looking up the ridge slope. If you click on it you can see the full resolution image, with lots of interesting geological details.

The panorama below, also created by Veerkamp, shows the view on Sol 1866, two weeks later, as the slope begins to flatten out and the distant foothills of Mount Sharp become visible. (If you click on the image you can see a very slightly reduced version of the full resolution panorama.) This image also shows the next change in geology. From orbit the Hematite Unit darkens suddenly at its higher altitudes, and Curiosity at this point was approaching that transition. The rover is now, on Sol 1876, sitting on that boundary, where they will spend a few days making observations before moving on.

Curiosity on the Hematite Unit, Sol 1866

null

The image on the right shows Curiosity’s approximate position, about halfway across the Hematite Unit and with the rover’s approximate future route indicated, as shown in this October 3, 2016 press release.

In the two months since my last rover update the Curiosity engineering team has spent a lot of time imaging and studying the Hematite Unit. They have also spent a considerable amount of time doing new tests on the rover’s drill in an effort to get around its stuck feed mechanism in order to drill again. Only yesterday they took another series of close-up images of the drill in this continuing effort.

As indicated by the October 3 2016 press release, the rover still has a good way to go before it begins entering the distant canyons and large foothills. While they should leave the Hematite Unit and enter the Clay Unit beyond in only a few more months, I expect it will be at least a year before they pass through the Clay Unit and reach the much more spectacular Sulfate Unit, where the rover will explore at least one deep canyon as well as a recurring dark feature on a slope that scientists think might be a water seep.

Opportunity

For the context of Opportunity’s recent travels along the rim of Endeavour Crater, see my May 15, 2017 rover update.
» Read more

Another LIGO black hole merger detected

Astronomers have announced another black hole merger detected by the LIGO gravitational wave observatory.

Dubbed GW170608, the latest discovery was produced by the merger of two relatively light black holes, 7 and 12 times the mass of the sun, at a distance of about a billion light-years from Earth. The merger left behind a final black hole 18 times the mass of the sun, meaning that energy equivalent to about 1 solar mass was emitted as gravitational waves during the collision.

This event, detected by the two NSF-supported LIGO detectors at 02:01:16 UTC on June 8, 2017 (or 10:01:16 pm on June 7 in US Eastern Daylight time), was actually the second binary black hole merger observed during LIGO’s second observation run since being upgraded in a program called Advanced LIGO. But its announcement was delayed due to the time required to understand two other discoveries: a LIGO-Virgo three-detector observation of gravitational waves from another binary black hole merger (GW170814) on August 14, and the first-ever detection of a binary neutron star merger (GW170817) in light and gravitational waves on August 17.

Petroglyphs found depicting the earliest leashed dogs?

Archaeologists have found petroglyphs in Saudi Arabia that could be the earliest depiction of dogs being held by leashes.

Carved into a sandstone cliff on the edge of a bygone river in the Arabian Desert, a hunter draws his bow for the kill. He is accompanied by 13 dogs, each with its own coat markings; two animals have lines running from their necks to the man’s waist.

The engravings likely date back more than 8000 years, making them the earliest depictions of dogs, a new study reveals. And those lines are probably leashes, suggesting that humans mastered the art of training and controlling dogs thousands of years earlier than previously thought.

The dating however remains uncertain. The carvings could be much younger.

Haze on Pluto lowers its global climate temperature 54º F

Using data collected during New Horizons’ fly-by, scientists have found that the planet’s atmosphere is 54º F colder than predicted, and from this they theorize that the presence of haze in that atmosphere is what cools it.

Pluto’s atmosphere is made mostly of nitrogen, with smaller amounts of compounds such as methane. High in the atmosphere — between 500 and 1,000 kilometres above the surface — sunlight triggers chemical reactions that transform some of these gases into solid hydrocarbon particles.

The particles then drift downward and, at around 350 kilometres above Pluto’s surface, clump with others to form long chemical chains. By the time they reach 200 kilometres’ altitude, the particles have transformed into thick layers of haze, which the New Horizons spacecraft saw dramatically blanketing Pluto.

Zhang and his colleagues compared the heating and cooling effects of the atmosphere’s gas molecules to those of its haze particles. Earlier studies have suggested that the presence of gas molecules, such as hydrogen cyanide, could help explain why Pluto’s atmosphere is so cold. But Zhang’s team found that including haze was the only way to get their model to match the temperatures that New Horizons measured as it flew by the dwarf planet.

This theory remains unproven. Moreover, there are other explanations proposed for the cold atmosphere by other scientists. It will take new instruments and future probes to resolve the question.

The post has been corrected. My math in calculating the conversion from Celsius to Fahrenheit was initially faulty. Thanks to reader Kirk for spotting the error.

Interstellar object resembles asteroid

Astronomers who have been observing the interstellar object that zipped past the Sun last month have concluded that it mostly resembles asteroids seen in our own solar system.

From its changing brightness, the team inferred that U1 is highly elongated with rough dimensions 30m x 30m x 180m. About twice the height of the Statue of Liberty, the 6:1 aspect ratio of U1 is “similar to the proportions of a fire extinguisher — although U1 is not as red as that,” says David Jewitt (UCLA), the first author of the study.

“With such an elongated shape, U1 probably needs a little cohesive strength to hold it together. But that’s not really unusual,” remarked study coauthor Jayadev Rajagopal (National Optical Astronomy Observatory). Commenting on its size, rotation, and color, Rajagopal mused that, “the most remarkable thing about U1 is that, except for its shape, how familiar and physically unremarkable it is.”

I wonder if they are still tracking it.

Astronomers find habitable Earth-mass planet 11 light years away

Worlds without end: Astronomers have found an Earth-mass planet 11 light years away, orbiting a quiet red dwarf star in the habitable zone.

Unlike Proxima Centauri, which periodically has large flares which make its Earth-sized planet less hospitable to life, this red dwarf, Ross 128, is more stable.

Many red dwarf stars, including Proxima Centauri, are subject to flares that occasionally bathe their orbiting planets in deadly ultraviolet and X-ray radiation. However, it seems that Ross 128 is a much quieter star, and so its planets may be the closest known comfortable abode for possible life.

Although it is currently 11 light-years from Earth, Ross 128 is moving towards us and is expected to become our nearest stellar neighbour in just 79 000 years — a blink of the eye in cosmic terms. Ross 128 b will by then take the crown from Proxima b and become the closest exoplanet to Earth!

Zwicky Transient Facility sees first light

Astronomers announced today that the Zwicky Transient Facility at the Palomar Observatory in California has seen first light, and will begin full operations in 2018.

When fully operational in 2018, the ZTF will scan almost the entire northern sky every night. Based at the Palomar Observatory in southern California and operated by Caltech, the ZTF’s goal is to use these nightly images to identify “transient” objects that vary between observations — identifying events ranging from supernovae millions of light years away to near-Earth asteroids.
an image of stars and the night sky

In 2016, the UW Department of Astronomy formally joined the ZTF team and will help develop new methods to identify the most “interesting” of the millions of changes in the sky — including new objects — that the ZTF will detect each night and alert scientists. That way, these high-priority transient objects can be followed up in detail by larger telescopes, including the UW’s share of the Apache Point Observatory 3.5-meter telescope.

By producing new high resolution images of the entire northern sky every night, this telescope instrument is going to discover gobs of new transients, from supernovae to binaries to novae to things we haven’t even seen before.

Exploring one of Mars’ giant volcanoes

Master index

For the past two weeks JPL’s image site has been releasing a string of images taken by Mars Odyssey of the smallest of Mars’ four giant volcanoes.

Pavonis Mons is one of the three aligned Tharsis Volcanoes. The four Tharsis volcanoes are Ascreaus Mons, Pavonis Mons, Arsia Mons, and Olympus Mars. All four are shield type volcanoes. Shield volcanoes are formed by lava flows originating near or at the summit, building up layers upon layers of lava. The Hawaiian islands on Earth are shield volcanoes. The three aligned volcanoes are located along a topographic rise in the Tharsis region. Along this trend there are increased tectonic features and additional lava flows. Pavonis Mons is the smallest of the four volcanoes, rising 14km above the mean Mars surface level with a width of 375km. It has a complex summit caldera, with the smallest caldera deeper than the larger caldera. Like most shield volcanoes the surface has a low profile. In the case of Pavonis Mons the average slope is only 4 degrees.

The image on the right is the context image, annotated by me to show where all these images were taken. The images can accessed individually below.

Each of these images has some interesting geological features, such as collapses, lava tubes, faults, and flow features. Meanwhile, the central calderas are remarkable smooth, with only a few craters indicating their relatively young age.

The most fascinating geological fact gleaned from these images is that they reveal a larger geological trend that runs through all of the three aligned giant volcanoes to the east of Olympus Mons.

The linear and sinuous features mark the locations of lava tubes and graben that occur on both sides of the volcano along a regional trend that passes thru Pavonis Mons, Ascreaus Mons (to the north), and Arsia Mons (to the south).

This trend probably also indicates the fundamental geology that caused all three volcanoes to align as they have.

Arsia Mons is of particular interest in that water clouds form periodically above its western slope, where there is also evidence of past glaciation. Scientists strongly suspect that there is a lot of water ice trapped underground here, possibly inside the many lava tubes that meander down its slopes. These facts also suggest that this might be one of the first places humans go to live, when they finally go to live on Mars.

Billionaire Yuri Milner considering funding mission to Enceladus

Capitalism in space: Billionaire Yuri Milner, who already funds several astronomy projects aimed at interstellar travel, is now considering funding a planetary probe to the Saturn moon Enceladus.

At the moment all he is doing is holding workshops with scientists and engineers to see if such a mission can be done for an amount he can afford. Considering that Elon Musk’s first concept to send a private probe to Mars, before SpaceX existed, was stopped because of high launch costs, thus becoming the inspiration for SpaceX itself in order to lower those costs, Milner’s private effort might actually be affordable now.

Sacrificing Scientific Skepticism

Phil Berardelli, who periodically comments here and who is a veteran science journalist who worked for the journal Science for a number of years, has written a very cogent four part essay on the subject of climate change for the think tank Capital Research Center.

Berardelli very carefully outlines the uncertainties that dominate our knowledge of the Earth’s climate, while explaining clearly why consensus is never what good science relies upon. As he notes,

Science is not primarily about proof; science is about disproof. Nothing in science, absolutely nothing, should ever be taken at face value. This view isn’t new; it’s age old.

Read it all, especially if you are one of the people who reads my writing and questions my skepticism about much of what I see in the climate field, especially coming from NASA and NOAA. Berardelli illustrates how doubt and skepticism are the hallmarks of science, and should always be honored, not denigrated with slurs like “denier.”

Full disclosure: Phil Berardelli was also my editor when I did a weekly column for UPI called Space Watch for six months in 2005.

A storm on Jupiter

A storm of Jupiter

Cool image time! The image above, reduced in resolution to post here, was taken during Juno’s ninth close fly-by of Jupiter in late October, and shows one particular storm swirl in the gas giant’s southern hemisphere.

The Juno team today highlighted an image taken during this fly-by of Jupiter’s entire southern hemisphere, but I find this close-up more interesting. Be sure to check out the full resolution version. It appears to me that the white swirls have risen up above the gold and blue regions, casting shadows down upon them.

Unfortunately, I cannot tell you the scale of this storm, as the release does not give any details, including where in the full hemisphere image it is located. I suspect, however, that it is large enough to likely cover the Earth.

Both the full hemisphere image and the image above were processed by citizen scientists Gerald Eichstädt and Seán Doran.

Physicists shrink their next big accelerator

Because of high costs and a refocus in research goals, physicists have reduced the size of their proposed next big particle accelerator, which they hope will be built in Japan.

On 7 November, the International Committee for Future Accelerators (ICFA), which oversees work on the ILC, endorsed halving the machine’s planned energy from 500 to 250 gigaelectronvolts (GeV), and shortening its proposed 33.5-kilometre-long tunnel by as much as 13 kilometres. The scaled-down version would have to forego some of its planned research such as studies of the ‘top’ flavour of quark, which is produced only at higher energies.

Instead, the collider would focus on studying the particle that endows all others with mass — the Higgs boson, which was detected in 2012 by the Large Hadron Collider (LHC) at CERN, Europe’s particle-physics lab near Geneva, Switzerland.

Part of the reason for these changes is that the Large Hadron Collider has not discovered any new particles, other than the Higgs Boson. The cost to discover any remaining theorized particles was judged as simply too high. Better to focus on studying the Higgs Boson itself.

Physicists once again fail to detect dark matter

The uncertainty of science: The most sensitive detector yet created by physicists has once again failed to detect dark matter, casting strong doubt on all present theories for its existence.

The latest results from an experiment called XENON1T at the Gran Sasso National Laboratory in Italy, published on 30 October, continue a dry spell stretching back 30 years in the quest to nab dark-matter particles. An attempt by a Chinese team to detect the elusive stuff, the results of which were published on the same day, also came up empty-handed. Ongoing attempts by space-based telescopes, as well as at CERN, the European particle-physics laboratory near Geneva, Switzerland, have also not spotted any hints of dark-matter particles.

The findings have left researchers struggling for answers. “We do not understand how the Universe works at a deeper and more profound level than most of us care to admit,” says Stacy McGaugh, an astrophysicist at Case Western Reserve University in Cleveland, Ohio.

The process here has been a good demonstration of the scientific method. Observers detect a phenomenon that does not make sense, which in this case was that the outer regions of galaxies rotate so fast that they should fly apart. Theorists then come up with a hypothesis to explain the phenomenon, which here was dark matter, subatomic particles that have weight but do not generally interact with the rest of the universe except by their mass, which acts to hold the galaxies together. Observers than try to prove the hypothesis by finding these theorized particles.

When the particles are not found, the theorists begin to rethink their theories. Maybe dark matter does not exist. Maybe (as is mentioned near the end of the article) a rethinking of the nature of gravity itself might be necessary. Or possibly the unseen matter is not subatomic, but ordinary matter not yet detected.

If only the climate field would apply this basic scientific method to its work. There, scientists found that carbon dioxide is increasing in the atmosphere. Some theorists posited an hypothesis that said that this increase might cause the climate to warm, and created numerous (almost a hundred) models to predict this warming. After more than thirty years, however, none of those models has successfully worked. The climate has not warmed as predicted, which suggests the hypothesis is flawed, and needs rethinking. Sadly, the leaders in the climate field refuse to do this rethinking. Instead, they appear willing to adjust and change their data to make it fit, sometimes in ways that are downright fraudulent.

This is not how science is done, and it is doing a terrible disservice to both science and society in general.

EPA approves release of bacteria-carrying mosquitoes to 20 states

The EPA has approved the release of lab-grown male mosquitoes, carrying a bacteria that prevents reproduction, in 20 states.

MosquitoMate will rear the Wolbachia-infected A. albopictus mosquitoes in its laboratories, and then sort males from females. Then the laboratory males, which don’t bite, will be released at treatment sites. When these males mate with wild females, which do not carry the same strain of Wolbachia, the resulting fertilized eggs don’t hatch because the paternal chromosomes do not form properly.

The company says that over time, as more of the Wolbachia-infected males are released and breed with the wild partners, the pest population of A. albopictus mosquitoes dwindles. Other insects, including other species of mosquito, are not harmed by the practice, says Stephen Dobson, an entomologist at the University of Kentucky in Lexington and founder of MosquitoMate.

While caution should always be exercised when introducing something like this into the environment, I honestly can’t see any downside to this work. The lab-grown mosquitoes cannot spread, as they cannot reproduce, even as their introduction reduces the mosquito population.

Nonetheless, no one should be surprised that this project has met with political resistance in many places.

First infrared image of a red giant star with a mass of the sun

 W Hydrae

Astronomers have used the ALMA array in Chile to take the first infrared image of a red giant star that has a mass similar to the Sun.

The dotted ring in the the image, cropped to post here, shows the Earth’s orbit. The star is farther along in its evolution than the Sun, and has expanded as it begins to use up its nuclear fuel.

The observations have also surprised the scientists. The presence of an unexpectedly compact and bright spot provides evidence that the star has surprisingly hot gas in a layer above the star’s surface: a chromosphere. “Our measurements of the bright spot suggest there are powerful shock waves in the star’s atmosphere that reach higher temperatures than are predicted by current theoretical models for AGB stars,” says Theo Khouri, astronomer at Chalmers and member of the team.

An alternative possibility is at least as surprising: that the star was undergoing a giant flare when the observations were made.

The handful of infrared images that astronomers have taken so far of several red giant stars indicates that these stars no longer look like the Sun, with a clear and precise spherical shape, but are puffed up almost like a cloud, with many uneven layers and complex extensions produced by their chaotic nature. This image of W Hydrae reinforces this impression.

New Horizons wants the public to help pick a nickname for its next target

The New Horizons science team is asking the public to submit suggestions for a good nickname for 2014 MU69, the Kuiper Belt object that the spacecraft will fly past on January 1, 2019.

The naming campaign is hosted by the SETI Institute of Mountain View, California, and led by Mark Showalter, an institute fellow and member of the New Horizons science team. The website includes names currently under consideration; site visitors can vote for their favorites or nominate names they think should be added to the ballot. “The campaign is open to everyone,” Showalter said. “We are hoping that somebody out there proposes the perfect, inspiring name for MU69.”

The campaign will close at 3 p.m. EST/noon PST on Dec. 1. NASA and the New Horizons team will review the top vote-getters and announce their selection in early January.

The press release says that a more formal name for the object will be submitted to the IAU after the fly-by.

NASA forces retraction of astronaut vision study due to privacy issues

NASA has forced the retraction of an important science paper researching the damage to vision for astronauts on long spaceflights because of a concern the privacy of the astronauts might be violated.

According to the first author, the paper included information that could identify some of the astronauts that took part in the study — namely, their flight information. Although the author said he removed the identifying information after the paper was online, NASA still opted to retract it. But a spokesperson at NASA told us the agency did not supply the language for the retraction notice. The journal editor confirmed the paper was retracted for “research subject confidentiality issues,” but referred a question about who supplied the language of the notice back to NASA.

…According to first author Noam Alperin of the University of Miami Miller School of Medicine in Florida, the paper “Role of Cerebral Spinal Fluid in Space Flight Induced Ocular Changes and Visual Impairment in Astronauts” showed that visual damage caused by long space flights resulted from tiny shifts in the volume of spinal fluid — not vascular changes, as many experts had previously thought.

Protecting the health privacy of the astronauts is something NASA and the doctors that work with them are legally required to do. However, in this case the paper had been scrubbed of this information a long time ago. To force its retraction now when the actual. research was valid and important and the privacy of the astronauts was now protected seems an over reaction to me. Then again, NASA might be under legal pressure from the astronauts themselves, and thus forced to act.

Sunspot update for October 2017

NOAA today posted its monthly update of the solar cycle, covering sunspot activity for October. That graph is posted below, with annotations.

October 2017 Solar Cycle graph

The graph above has been modified to show the predictions of the solar science community. The green curves show the community’s two original predictions from April 2007, with half the scientists predicting a very strong maximum and half predicting a weak one. The red curve is their revised May 2009 prediction.

After two straight months of rising sunspot activity, the number of sunspots plunged in October, returning the numbers almost exactly back to the general trend we have seen since 2014 when the solar maximum ended. While the short two month increase indicated that the minimum will not occur as soon as this long term trend suggests, the quick return to that trend this month suggests that it will.

Meanwhile, November is six days old and has yet to see any sunspots at all.

Astronomers find Kuiper Belt-like ring around Proxima Centauri

Worlds without end: Astronomers have found a dusty ring 1 to 4 astronomical units from the nearest star, Proxima Centauri.

Because Proxima Centauri is a smaller, dimmer star, its system is more compact. Proxima b [the star’s known exoplanet] circles the star at 0.05 astronomical units (a.u., the average distance between Earth and the Sun) — for reference, Mercury orbits the Sun at 0.39 a.u. The dusty ring lies well beyond that, extending from 1 to 4 a.u.

The Proxima ring is similar in some ways to the Kuiper Belt, a cold, dusty belt in the far reaches of our solar system (beyond 40 a.u.) that contains a fraction of Earth’s mass. While the Kuiper belt is well known for larger members such as Pluto and Eris, it also contains fine grains, ground down through collisions over billions of years. The dust ALMA observed around Proxima Centauri is composed of similar small grains. The average temperature and total mass of the Proxima ring is also about the same as our Kuiper Belt.

Because the ring here much closer to the star than our Kuiper Belt, the material is much more densely packed. Moreover, the presence of both a ring and an exoplanet suggests more planets might remain undiscovered there, increasing the chances that this star could have a solar system very worthwhile exploring.

Fifth mirror for Giant Magellan Telescope has been cast

The fifth mirror, out of seven, for Giant Magellan Telescope (GMT) has been cast by the University of Arizona mirror lab.

With its casting this weekend, the fifth GMT mirror joins three additional GMT mirrors at various stages of production in the Mirror Lab. Polishing of mirror 2’s front surface is well underway; coarse grinding will begin on the front of the third mirror shortly and mirror number 4, the central mirror, will soon be ready for coarse grinding following mirror 3. The first GMT mirror was completed several years ago and was moved to a storage location in Tucson this September, awaiting the next stage of its journey to Chile. The glass for mirror 6 has been delivered to Tucson and mirror seven’s glass is on order from the Ohara factory in Japan.

In time, the giant mirrors will be transported to GMT’s future home in the Chilean Andes at the Carnegie Institution for Science’s Las Campanas Observatory. This site is known for being one of the best astronomical sites on the planet with its clear, dark skies and stable airflow producing exceptionally sharp images. GMTO has broken ground in Chile and has developed the infrastructure on the site needed to support construction activities.

If all goes right, GMT will begin its science work using 4 mirrors in 2020, with the use of all 7 mirrors beginning in 2022. This will be several years before the larger Thirty Meter Telescope and the European Extremely Large Telescope.

Physicists using cosmic rays find hidden void inside the Great Pyramid

Physicists using cosmic rays detectors have located what appears to be an empty space inside the Great Pyramid in Egypt that has never been entered.

To see through the Great Pyramid, the researchers used a technique developed in high-energy particle physics: they tracked particles called muons, which are produced when cosmic rays strike atoms in the upper atmosphere. Around 10,000 muons rain down on each square metre of Earth’s surface every minute. Sensitive muon detectors have been developed for use in particle accelerators, but they have also been used in the past decade or so to determine the inner structures of volcanoes and to study the damaged nuclear reactor at Fukushima, Japan.

In December 2015, physicist Kunihiro Morishima of Nagoya University, Japan, and his colleagues placed a series of detectors inside the Queen’s chamber, where they would detect muons passing through the pyramid from above. The particles are partially absorbed by stone, so any large holes in the pyramid would result in more muons than expected hitting the detectors.

After several months, “we had an unexpected line”, says Tayoubi. To check the result, two other teams of physicists, from the Japanese High Energy Accelerator Research Organization in Tsukuba and the French Alternative Energies and Atomic Energy Commision in Paris, then used different types of muon detector placed in other locations both inside and outside the pyramid. All three teams observed a large, unexpected void in the same location above the Grand Gallery. …The space is at least 30 metres long, with a similar cross section to the Grand Gallery. “It was a big surprise,” says Tayoubi. “We’re really excited.”

It is unclear how or even if they will access this void. Right now its purpose remains a mystery, including whether it contains any artifacts.

NASA wants private company to take over Spitzer Space Telescope

NASA has issued a request for proposals from private companies or organizations to take over the operation of the Spitzer Space Telescope after 2019.

NASA’s current plans call for operating Spitzer through March of 2019 to perform preparatory observations for the James Webb Space Telescope. That schedule was based on plans for a fall 2018 launch of JWST, which has since been delayed to the spring of 2019. Under that plan, NASA would close out the Spitzer mission by fiscal year 2020. That plan was intended to save NASA the cost of running Spitzer, which is currently $14 million a year. The spacecraft itself, though, remains in good condition and could operating well beyond NASA’s current plan.

“The observatory and the IRAC instrument are in excellent health. We don’t have really any issues with the hardware,” said Lisa Storrie-Lombardi, Spitzer project manager, in a presentation to the committee Oct. 18. IRAC is the Infrared Array Camera, an instrument that continues operations at its two shortest wavelengths long after the spacecraft exhausted the supply of liquid helium coolant.

The spacecraft’s only consumable is nitrogen gas used for the spacecraft’s thrusters, and Storrie-Lombardi said the spacecraft still had half its supply of nitrogen 14 years after launch.

The way a private organization could make money on this is to charge astronomers and research projects for observation time. This could work, since there is usually a greater demand for research time than available observatories.

New exoplanet defies accepted theories of planet formation

The uncertainty of science: A newly discovered exoplanet, the size of Jupiter and orbiting a star half the size of the Sun, should not exist based on all the presently favored theories of planet formation.

New research, led by Dr Daniel Bayliss and Professor Peter Wheatley from the University of Warwick’s Astronomy and Astrophysics Group, has identified the unusual planet NGTS-1b – the largest planet compared to the size of its companion star ever discovered in the universe.

NGTS-1b is a gas giant six hundred light years away, the size of Jupiter, and orbits a small star with a radius and mass half that of our sun.

Its existence challenges theories of planet formation which state that a planet of this size could not be formed by such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. The planet is a hot Jupiter, at least as large as the Jupiter in our solar system, but with around 20% less mass. It is very close to its star – just 3% of the distance between Earth and the Sun – and orbits the star every 2.6 days, meaning a year on NGTS-1b lasts two and a half days.

No one should be surprised by this. While the present theories of planet formation are useful and necessary, giving scientists a rough framework for studying exoplanets, they should not be taken too seriously. We simply do not yet have enough information about how stars, solar systems, and planets form.

1 136 137 138 139 140 279