Astronomers discover complex molecules in protostar accretion disk
Astronomers have discovered several complex molecules in the accretion disk surrounding a very young baby star about 1300 light years away in the constellation Orion.
The research team’s ALMA observations have clearly detected an atmosphere of complex organic molecules above and below the disk. These include methanol (CH3OH), deuterated methanol (CH2DOH), methanethiol (CH3SH), and formamide (NH2CHO). These molecules have been proposed to be the precursors for producing biomolecules such as amino acids and sugars. “They are likely formed on icy grains in the disk and then released into the gas phase because of heating from stellar radiation or some other means, such as shocks,” says co-author Zhi-Yun Li of the University of Virginia.
What is even most interesting about this discovery is that these complex molecules are not scattered throughout the disk, but are concentrated in regions above and below its central plane, what the astronomers are labeling “an atmosphere.” This suggests that differentiation — the same process that separates the heavier molecules from lighter ones both in centrifuges and in the cores of planets — occurs quickly in accretion disks as well.
Astronomers have discovered several complex molecules in the accretion disk surrounding a very young baby star about 1300 light years away in the constellation Orion.
The research team’s ALMA observations have clearly detected an atmosphere of complex organic molecules above and below the disk. These include methanol (CH3OH), deuterated methanol (CH2DOH), methanethiol (CH3SH), and formamide (NH2CHO). These molecules have been proposed to be the precursors for producing biomolecules such as amino acids and sugars. “They are likely formed on icy grains in the disk and then released into the gas phase because of heating from stellar radiation or some other means, such as shocks,” says co-author Zhi-Yun Li of the University of Virginia.
What is even most interesting about this discovery is that these complex molecules are not scattered throughout the disk, but are concentrated in regions above and below its central plane, what the astronomers are labeling “an atmosphere.” This suggests that differentiation — the same process that separates the heavier molecules from lighter ones both in centrifuges and in the cores of planets — occurs quickly in accretion disks as well.